
Azure and
Xamarin Forms

Cross Platform Mobile Development
—
Russell Fustino

www.allitebooks.com

http://www.allitebooks.org

Azure and Xamarin
Forms

Cross Platform Mobile
Development

Russell Fustino

www.allitebooks.com

http://www.allitebooks.org

Azure and Xamarin Forms: Cross Platform Mobile Development

ISBN-13 (pbk): 978-1-4842-3560-7		 ISBN-13 (electronic): 978-1-4842-3561-4
https://doi.org/10.1007/978-1-4842-3561-4

Library of Congress Control Number: 2018947192

Copyright © 2018 by Russell Fustino

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3560-7.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Russell Fustino
New Port Richey, Florida, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3561-4
http://www.allitebooks.org

This book is dedicated to Nicholas, Justine, John,
James, Olivia, and Melissa. It is also dedicated to my

two brothers, Rich and Gary Fustino, and their families.
They all inspire me, and I love them all dearly.

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: �Installing Visual Studio 2017���1

Installing Visual Studio 2017 and Tools on Windows���1

Installing Visual Studio 2017 and Tools on the Mac���4

Other Tools���5

Summary���5

Chapter 2: �Introduction to Xamarin Forms��7

Project Overview��7

Project 2-1: Creating Your First Xamarin Forms Application��������������������������������11

Project 2-2: Working with the User Interface���40

Project 2-3: Dealing with Tablet and Phone Form Factors�����������������������������������49

Project 2-4: Working with Images��59

Project 2-5: Working with ListView��69

Summary���88

Chapter 3: �Introduction to Azure: A Developer’s Perspective��������������89

Free Azure Accounts and Credits���90

Azure Portal���96

Billing and Usage���103

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Marketplace���104

Windows Virtual Machines���107

Deployment Models and Resource Groups��118

Web App ASP.NET���119

Azure CLI��128

SQL Database���137

Creating Your Database��138

Using Visual Studio to Verify Your Database���142

Building Solutions��145

Documentation���145

Solutions���146

Status���148

Support���149

Delete Resources���153

Summary���154

Chapter 4: �Building an Azure Service Using Quickstart��������������������155

Part 1: Create a Mobile App in the Azure Portal���157

Part 2: Modify the Service App���164

Part 3: Add the Question and Response DTOs and End Points���������������������������167

Part 4: Add Controllers���170

Part 5: Seed the Data and Force Entity Framework to Re-create
Our Tables and Publish���182

Part 6: Verify the Database���195

Summary���204

Table of ContentsTable of Contents

vii

Chapter 5: �Building a Xamarin Forms Azure Client���������������������������205

Part 1: Open an Existing Xamarin Forms Application���206

Part 2: Add Azure Support to a Xamarin Forms Application�������������������������������212

Part 3: Customize the DTOs for the Polling Service���221

Part 4: Fill In the Logic to Query and Update Our Poll Records��������������������������224

Part 5: Add Support to Our App for Offline Data Caching�����������������������������������231

Part 6: Synchronizing to the Remote Database��240

Summary���249

Chapter 6: �Delete Resources in Your Subscription����������������������������251

Removing All Artifacts��251

Summary���253

Book Summary��253

�Index��255

Table of ContentsTable of Contents

ix

About the Author

Russell Fustino is CEO of Fustino Brothers,

Inc., makers of the endorsed “Jethro Tull”

app, and a Microsoft MVP in Windows

development. He is a former developer

evangelist for Microsoft, as well as for Russ’

ToolShed Network, Xamarin, Raygun, and

ComponentOne. Russ is also a former Azure senior cloud solutions

architect for Opsgility. He is highly experienced in developing cross

platform apps using Xamarin and C# for UWP, Android, and iOS. Russ is

a Xamarin Certified Mobile Developer. He has a passion for conveying

relevant, current, and future software development technologies and

tools through live seminars, teaching, and Internet video productions.

Russ heads the Mobile Application Dev Tampa (www.MADTampa.com) user

group in the Tampa, Florida, area. He is also the local PC handyman for

his community, fixing viruses, providing tune-ups, and helping neighbors

who have fallen prey to computer scams. Please like www.facebook.com/

PCHandymanRussFustino/ and www.facebook.com/Fustinobrothers/

on Facebook. You can follow Russ on Twitter at @FustinoBrothers and

@RussFustino and on LinkedIn at https://www.linkedin.com/in/

russfustino/. Russ has enlightened, entertained, and educated more

than 1 million developers in his career and is a recipient of the INETA

(International .NET Association) Lifetime Achievement award.

https://mvp.microsoft.com/en-us/PublicProfile/5000332?fullName=Russell Fustino
http://www.madtampa.com/
http://www.facebook.com/PCHandymanRussFustino/
http://www.facebook.com/PCHandymanRussFustino/
http://www.facebook.com/Fustinobrothers/
https://www.linkedin.com/in/russfustino/
https://www.linkedin.com/in/russfustino/

xi

About the Technical Reviewer

Sunny Mukherjee is a software developer,

architect, and mentor with a wealth of

technical knowledge in various software

disciplines, including ASP.NET, Web Services,

Web API, Angular, WPF, Xamarin Forms,

SQL, and Azure. He holds an MBA from the

University of South Florida. He is always

looking to bring value to technology solutions.

In his personal time, he loves motorcycles,

astronomy, movies, video games, exercising,

meditation, and photography. If you want to

learn about technology trends and career tips, you can follow his LinkedIn

posts at www.linkedin.com/in/sunnymukherjee/.  

http://www.linkedin.com/in/sunnymukherjee/

xiii

Acknowledgments

I would like to acknowledge the Microsoft MVP program and community.

Both have provided me years of networking with lots of great minds, as

well as software that I use to run my business, not to mention incredible

MVP Summits providing top-notch education. Joe Darko is my Program

Manager Evangelist for MVPs in my neck of the woods, and his efforts are

greatly appreciated. It’s all about personalization and localization, and Joe

gets that.

xv

Introduction

It’s as easy as 1-2-3. I often have been asked to recommend good books on

getting started with Xamarin Forms or Azure or on how to use both tools.

You are reading the book that I can now wholeheartedly recommend!

So, what exactly do I mean by “as easy as 1-2-3”? This refers to how this

book will cover Azure and Xamarin Forms in depth, as no other book to

date, specifically by means of the following steps:

	 1.	 Create a database for your app.

	 2.	 Serve up data in a service for the Xamarin Forms

app to consume.

	 3.	 Consume the service from Azure in a Xamarin

Forms app and display and/or update the data.

The preceding are the three steps in the Azure Mobile App Xamarin

Forms Quick Start. They constitute my new “file new” when creating a

future app. But wait, there’s more! I will also cover both building a new

app and modifying an existing app to Azure-ize it, including offline

synchronization! If that is not enough, after reading this book, you should

feel extremely comfortable using the Azure portal, with all the ins and outs

of ramping up, and alleviate any related fears, including usage charges.

So why Xamarin Forms? To be honest, knowing C# and about 30

other languages, I simply did not want to learn Yet Another Language,

YAL, with Objective-C, Java, Swift…and the list goes on. Not that I have

anything against those languages, I just did not want to spend the time

learning them. Time is too precious. Building apps that cross platforms is

a necessity. For example, when I completed a Windows prototype version

of the Jethro Tull fan app a few years ago, I said to my brothers, Rich and

xvi

Gary, “This app is a great fan app, and maybe we should actually show it

to Jethro Tull.” So, I sent an e-mail to Jethro Tull, with screenshots. Within

six hours, they replied, “This looks great, do you also work with iPhone and

Android”? Heck yah! We do now! Enter Xamarin.

My point is, in this day and age, you need apps for all of the platforms:

Android, iOS, Windows. I could even imagine using Xamarin for more

platforms on the horizon—for the Mac, watches, and other devices.

Remember the slogan that propelled Java? “Write once. Run anywhere.”

Well, the saying lives on for C# and the .NET stack.

Let’s talk about Xamarin and Xamarin Forms. Xamarin is the

underlying platform that provides about 80 percent code-sharing. Xamarin

Forms sits on top of the Xamarin platform, and it also shares the user

interface layer. My Xamarin Forms apps typically provide 95 percent

shared code. Let’s say I am building a Windows UWP app with Xamarin

Forms. When I am done with the UWP app, so will I be with the iOS and

Android versions! No need to have three different skill sets and three sets

of code from different languages. Only one skill set is required: Xamarin

Forms and C#. When I worked as an evangelist for Xamarin, it was

commonly said that anything you can do in Objective-C and Java, you can

do with Xamarin. That’s quite a statement, isn’t it? It drove me to do deep-

dive learning about Xamarin and get my Xamarin certification, that is for

certain.

As for Azure, a common fear is cost. Be assured that there are many

tools that I will cover in this book that can help you with this. When

I was initially learning Azure, I felt it was an incredibly huge arena of

technology. I now simply enjoy using Azure to build solutions, and it is

easy to use as well. I have always been a proponent of third-party tools.

Perhaps it was because third-party controls, for example, only require

setting up a few properties, or calling some of the controls methods, and,

presto, magic... you have created an app. Well, it is the same with setting

properties on Azure blades. Once completed, you are well on your way to

IntroductionIntroduction

xvii

implementation. Azure just makes sense, period. The modern enterprise is

cutting-edge and must be, to stay ahead of the competition.

Technology is advancing at an incredible rate. I sometimes think how

I now program tasks, such as notifying millions of users simultaneously,

using Azure, and it only takes a few lines of code. It is really mind-boggling.

After reading this book, you will realize that Azure is a platform that is

efficient, scalable, secure, easy-to-use, cost-effective, performant, well-

documented, and well-supported. You will be surprised at how fast you

can build your solutions from end-to-end with Azure and Xamarin Forms.

Enjoy the ride. I hope this book motivates you to begin a deep dive

yourself. So, where do I focus my technology time without the fear of a

white elephant? The answer: Azure and Xamarin Forms.

I am extremely honored to have written the first book combining

two of today’s hottest technologies for building cross platform apps and

utilizing the cloud, via Azure and Xamarin Forms. The best news is that it’s

as easy as 1-2-3.

IntroductionIntroduction

1© Russell Fustino 2018
R. Fustino, Azure and Xamarin Forms, https://doi.org/10.1007/978-1-4842-3561-4_1

CHAPTER 1

Installing Visual
Studio 2017
In this chapter, you will learn how to install Visual Studio 2017, which will

be used to complete the examples in this book.

Note  The source code and assets for this book can be downloaded
from https://github.com/Apress/azure-and-xamarin-forms

�Installing Visual Studio 2017 and Tools
on Windows
This chapter covers how to install the required products to complete all the

examples in this book.

•	 Windows 10 Pro or higher is required to run the

emulators and cross platform development for iOS,

Android, and Universal Windows Platform (UWP).

•	 Download and install Visual Studio Community 2017 or

later versions, available at www.visualstudio.com/thank-

you-downloading-visual-studio/?sku=Community.

﻿https://github.com/Apress/azure-and-xamarin-forms﻿
http://www.visualstudio.com/thank-you-downloading-visual-studio/?sku=Community
http://www.visualstudio.com/thank-you-downloading-visual-studio/?sku=Community

2

•	 Select and install the UWP development workload,

(Figure 1-1) under the Windows section, and Mobile

development with .NET.

•	 Select the .NET (cross platform development using

Xamarin) option, under the Mobile & Gaming section

(Figure 1-2) on the Visual Studio (VS) 2017 Installer.

Figure 1-1.  Select Universal Windows Platform development

Figure 1-2.  Select Mobile development with .NET

Install ASP.NET and web development ➤ Azure development under

the Web & Cloud section (Figure 1-3).

Chapter 1 Installing Visual Studio 2017

3

Install Data storage and processing, under the same section (Figure 1-4).

Figure 1-3.  Select ASP.NET and web development ➤ Azure
development

Figure 1-4.  Select Data storage and processing

Under the Individual components tab, under the Emulators section,

check off the following (Figure 1-5):

•	 Google Android Emulator (global)

•	 Intel Hardware Accelerated Execution Manager (global)

•	 Visual Studio Emulator for Android

•	 All Windows 10 Mobile Emulator (Anniversary Edition

AND Creators Update)

Chapter 1 Installing Visual Studio 2017

4

If you do not see Google Android Emulator listed, this means that you

do not have Hyper-V enabled. See Chapter 2 for how to enable Hyper-V.

In the meantime, start the install.

�Installing Visual Studio 2017 and Tools
on the Mac
Optionally, install Visual Studio for the Mac. The purpose for a Mac

installation would be to run, test, and deploy iOS and Android versions of

your app in a Mac environment (UWP not supported). To build iOS apps

on a PC, you must be wired to a Mac on the same network. Most of the

examples in this book will use either the Android emulator or UWP local

machine on a PC, so the Mac install is optional for the book. Instructions

are available at https://developer.xamarin.com/guides/ios/getting_

started/installation/mac/.

Figure 1-5.  Select Google Android Emulator (global), Intel Hardware
Accelerated Execution Manager (global), Visual Studio Emulator for
Android, and Windows 10 Mobile Emulator (Anniversary Edition
and Creators Update)

Chapter 1 Installing Visual Studio 2017

https://developer.xamarin.com/guides/ios/getting_started/installation/mac/
https://developer.xamarin.com/guides/ios/getting_started/installation/mac/

5

�Other Tools
•	 Postman (www.getpostman.com and install)

•	 SQL Server Management Studio (https://docs.

microsoft.com/en-us/sql/ssms/download-sql-

server-management-studio-ssms). This tool will be

used to verify our database contents.

•	 Firefox (www.mozilla.org/firefox/new/). Firefox has

a nicely formatted view when looking at JSON data

coming back from a web service.

�Summary
In this chapter, you learned how to install Visual Studio 2017, which will

be used to complete the examples in this book, and some other tools, such

as Postman, SQL Server Management Studio, and Firefox. Visual Studio

for the Mac is an optional installation. In the next chapter, we will build a

Xamarin Forms app.

Chapter 1 Installing Visual Studio 2017

http://www.getpostman.com/
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
http://www.mozilla.org/firefox/new/

7© Russell Fustino 2018
R. Fustino, Azure and Xamarin Forms, https://doi.org/10.1007/978-1-4842-3561-4_2

CHAPTER 2

Introduction
to Xamarin Forms
Xamarin Forms is an awesome cross platform environment from which to

build iOS, Android, and UWP apps, as well as other potential platforms in

the future.

�Project Overview
In this chapter, you’ll get your feet wet with Xamarin Forms via five

projects. Each project builds on the prior one. Several topics will be

covered in this introductory chapter, including how to create a Xamarin

Forms solution, as well as emulator tips, navigation, images, event

handlers, device form factors, and list views. The result will be a typical app

with a main navigation page, a list view page, and a detail page that you can

use as a template for building future apps! We will be creating a book list

project that has a main navigation page that looks like that in Figure 2-1.

8

It has a list view page that looks like that in Figure 2-2.

Figure 2-1.  Main navigation page in the completed project

Chapter 2 Introduction to Xamarin Forms

9

The app will navigate to a detail page on the Apress site for the book

selected from a list such as that in Figure 2-3.

Figure 2-2.  ListView page in the completed project

Chapter 2 Introduction to Xamarin Forms

10

•	 We’ll first create a new Xamarin Forms application and

review the structure of the solution. We’ll then run the

application for Android, UWP, and, optionally, iOS, if

connected with a Mac server. As this is a cross platform

app, you can use any mix of the platform projects,

depending on your development environment (Mac or

Windows).

•	 We will then enhance the app, to have a main

navigation page, with StackLayout and GridLayout,

which considers device form factors for phones and

tablets, using device-specific logic.

•	 We will use XAML and code behind to control your

layout form factors for tablets and phones.

Figure 2-3.  Detail page in the completed project

Chapter 2 Introduction to Xamarin Forms

11

•	 We will also use embedded resource images of the

MainPage.

•	 A ListView page will be added with a selection event

handler. You can also run these examples on Visual

Studio (VS) for Mac; however, this does not support UWP.

Note R un all the exercises in this book from your laptop/PC and not
an Azure virtual machine.

Time Estimate
70 Minutes

�Project 2-1: Creating Your First Xamarin
Forms Application
Time Estimate

20 Minutes

In this project, you will create your first Xamarin Forms application.

You will see how to get started in Visual Studio 2017 and build a Xamarin

Forms application by choosing a built-in template to get stated with. Then

you will get your emulators working and add a page and navigate between

the two.

	 1.	 Start Visual Studio 2017. Sign in with the same

credentials as your Azure or developer account.

Figure 2-4 shows Sign in.

Chapter 2 Introduction to Xamarin Forms

12

	 2.	 From the File menu, select New ➤ Project. See

Figure 2-5.

Figure 2-4.  Visual Studio Welcome screen sign in

Figure 2-5.  Visual Studio File ➤ New ➤ Project

Chapter 2 Introduction to Xamarin Forms

13

	 3.	 Expand Templates ➤ Visual C# ➤ Cross-Platform

and select Cross Platform App and use BookLists

as the Name at a location near your root (C\Demo).

It is always advisable to select a Location near your

root, as Android will often complain about the file

path being too long. See Figure 2-6.

Figure 2-6.  Open the Cross-Platform Xamarin.Forms
application template.

Chapter 2 Introduction to Xamarin Forms

14

	 4.	 If you get prompted by a Windows Security Alert,

select both the private and public options and click

Allow access. See Figure 2-7.

Figure 2-7.  Allowing access to a security alert

	 5.	 A screen similar to that in Figure 2-8 appears.

Choose the Blank App template, and the shared

.NET Standard Code Sharing Strategy options. Then

click OK.

Chapter 2 Introduction to Xamarin Forms

15

	 6.	 If prompted for UWP versions, accept the defaults

and click OK. See Figure 2-9.

Figure 2-8.  Choosing the Blank App template, and the .NET
Standard Code Sharing Strategy options

Figure 2-9.  Accepting the defaults for Target Version and Minimum
Version UWP application support

Chapter 2 Introduction to Xamarin Forms

16

	 7.	 If prompted to use the User developer features,

select Developer mode when your settings are

displayed. This will allow you to deploy to devices.

See Figure 2-10.

Figure 2-10.  If prompted, select Developer mode in your settings

	 8.	 If you are prompted for the Mac Server, ignore it or,

if you have the required setup on the Mac, connect

it. This is an optional setup for this book. Details can

be found here: https://developer.xamarin.com/

guides/ios/getting_started/installation/mac/.

You will require a Mac, to compile, emulate, and

deploy your iOS applications. You can also use VS

for Mac, but UWP is not supported there.

Chapter 2 Introduction to Xamarin Forms

https://developer.xamarin.com/guides/ios/getting_started/installation/mac/
https://developer.xamarin.com/guides/ios/getting_started/installation/mac/

17

	 9.	 Review the solution architecture in the Solution

Explorer window (Figure 2-11). You will see four

projects in this solution: one for each of the head

projects—Android, iOS, and Universal Windows

(UWP)—and one for shared projects. The head

projects are for your startup projects to select from,

depending on which platform you want to run.

The shared .NET Standard project is where you will

put most of your code. This could be more than

95 percent.

Figure 2-11.  Solution Explorer contains shared, Android, iOS, and
UWP projects

	 10.	 Select BookLists.Android as the project you wish to

run, right-click it, and select Set as StartUp Project,

as shown in Figure 2-12.

Chapter 2 Introduction to Xamarin Forms

18

Figure 2-12.  Android Set as StartUp Project

Note  You will see the sections “Try{…}” and “Catch{…}” in among
the following steps.

In code, we often use Try/Catch in error-handling. For those of you
who are unfamiliar with this, try some code, and if it does not work,
handle it in the Catch clause.

In instructions throughout this book, you also may see these terms
without text in braces following. In such cases, the terms suggest
that you try something, and if this does not work, to check the Catch
section(s) that immediately follow, for a possible solution.

Chapter 2 Introduction to Xamarin Forms

19

	 11.	 Try: Run the app, selecting the emulator for the

5" KitKat. The emulators that begin with the size of

the device are the VS 2017 Android emulators. These

are the fastest Android emulators. See Figure 2-13.

Figure 2-13.  5" KitKat selected

	 12.	 Catch: If you do not see the VS 2017 Android

emulators, you will have to run the VS 2017 Installer

Program, modify it for your installed version, and

select the Individual Components tab. Scroll down

until you see the Emulators section. Check Visual

Studio Emulator for Android. This will take several

minutes to install, and you may have to reboot. See

Figure 2-14.

Chapter 2 Introduction to Xamarin Forms

20

	 13.	 Catch: {If you do not see the Visual Studio Emulator

for Android in the list, this means that you are not

running Hyper-V. To run Hyper-V, you must change

your bios settings to support virtualization. Close all

applications. Right-click the start button and select

Run. Type “shutdown/r/o.” This will reboot your

machine with options and allow you to troubleshoot

advanced options, to bring up the firmware settings

for the bios. Once in the bios, use the arrow keys

to navigate to the desired section and look for an

option to enable virtualization. Then repeat the step

above.} See Figures 2-15 and 2-16.

Figure 2-14.  Selecting Visual Studio Emulator for Android in VS
Installer

Chapter 2 Introduction to Xamarin Forms

21

Figure 2-15.  Right-click Start and select Run

Figure 2-16.  Type “shutdown/r/o” to restart with options

	 14.	 Catch: {Some machines are too fast for the emulator.

If your app starts in the VS Android emulator but

exits quickly, perform the following steps (Android

app starts and immediately closes, debugging stops):

a.	 Close the Android simulator window, to shut down

the virtual machine.

b.	 Go to the properties of the Android project, hit tab

Android options, and unselect Use Fast Deployment.

Chapter 2 Introduction to Xamarin Forms

22

c.	 Start Hyper-V Manager (This is the Microsoft

program to manage virtual machines in Windows;

you have it installed.)

d.	 Select the emulator you are trying to use. If the

desired emulator does not appear, you must either

launch it first from either Visual Studio or from the

Visual Studio Emulator for Android.

e.	 Right-click for context menu, then hit Settings.

f.	 In the Settings dialog, expand Processor.

g.	 Click Compatibility.

h.	 In the right pane set check box “Migrate to a physical

computer with a different processor version”

i.	 Start the debugging in Visual Studio to restart the

simulator.}See Figure 2-17.

Figure 2-17.  In Hyper-V Manager, select the emulator that ends the
app quickly, select Settings ➤ Compatibility, and check the Migrate
option

Chapter 2 Introduction to Xamarin Forms

23

	 15.	 Rotate the phone, slide the lock to unlock it, and

you should see “Welcome to Xamarin Forms.” See

Figures 2-18 and 2-19.

Figure 2-18.  Selecting the rotate to right button and sliding up the
lock

Chapter 2 Introduction to Xamarin Forms

24

	 16.	 Now right-click and select the UWP project and

make it the Startup project. See Figure 2-20.

Figure 2-19.  Your first app appears in Android, using Xamarin
Forms!

Chapter 2 Introduction to Xamarin Forms

25

	 17.	 Try: Run the app on the Local Machine. See

Figures 2-21 and 2-22.

Figure 2-20.  Select UWP as the Startup project

Figure 2-21.  Selecting Local Machine

Chapter 2 Introduction to Xamarin Forms

26

Figure 2-22.  Your first app on UWP, using Xamarin Forms

	 18.	 Catch: {The first time you go to run a project on

UWP, you may have to check the build configuration

first and make sure that the deploy and build

options are checked and are x64. Under the Build

menu, select Configuration Manager…}

See Figures 2-23 and 2-24.

Chapter 2 Introduction to Xamarin Forms

27

Figure 2-23.  Selecting the Build ➤ Configuration Manager… option

Figure 2-24.  Selecting Build and Deploy for UWP

Chapter 2 Introduction to Xamarin Forms

28

	 19.	 If you have optionally installed VS for the Mac,

follow the next few steps; otherwise, skip to step 25.

	 20.	 Right-click the iOS project in the solution and set as

Startup Project.

	 21.	 Select Tools ➤ Options ➤ Xamarin ➤ iOS and check

off Remote Simulator to Windows, which will allow

you to see the simulator on the PC when you run.

Then select Find Xamarin Mac Agent and read the

three-step procedure for remote login on the Mac.

See Figures 2-25 through 2-28.

Figure 2-25.  Select Tools, Options, Xamarin, and iOS Settings. Check
Remote Simulator and click Find Xamarin Mac Agent.

Chapter 2 Introduction to Xamarin Forms

29

Figure 2-26.  Step 1 of 3 for Remote Login

Figure 2-27.  Step 2 of 3 for Remote Login

Chapter 2 Introduction to Xamarin Forms

30

	 22.	 On the Mac, find the IP address by clicking the

Apple logo in the upper-left corner and then select

System Preferences and Network. Copy the IP

address. Back on the PC, click Add Server and enter

the Mac IP address. You will be prompted for your

username and password on the Mac. You should see

the connection machine turn green. See Figure 2-29.

Figure 2-28.  Step 3 of 3 for Remote Login

Figure 2-29.  Select Add Server, or Connect, if you have a previous
connection

Chapter 2 Introduction to Xamarin Forms

31

	 23.	 To run in the iOS simulator, select iPhoneSimulator,

the small drop-down arrow will provide a list of

simulators. Select iPhone 8 iOS. You may have to

close the simulator once, if it does not start up

the first time in a minute or two, and rerun. (See

Figures 2-30 and 2-31.) If the simulator does not

appear, know that it sometimes runs behind your

Visual Studio window. So just move windows

around till you see it, or cycle through your open

apps using an Alt+Tab key combination.

Figure 2-30.  Select iPhoneSimulator (1), the tiny drop-down
arrow (2), and the simulator model, such as iPhone 8 iOS (3)

Chapter 2 Introduction to Xamarin Forms

32

Figure 2-31.  The iPhoneSimulator displays running the app

Chapter 2 Introduction to Xamarin Forms

33

Figure 2-32.  Right-click BookLists and select Add ➤ New Item….

	 24.	 Stop the app. Add a new page to the shared .NET

Standard project. Right-click the shared .NET

Standard project, select Add ➤ New Item. See

Figure 2-32.

	 25.	 Select Visual C# Items ➤ List View Page and name

the page Microsoft.xaml. See Figure 2-33.

Chapter 2 Introduction to Xamarin Forms

34

	 26.	 Open Microsoft.xaml and set the following:

Padding = "20,20" and Title = "Microsoft Books".

This will provide some spacing around the children

views of the content page and give it a title. Always

use double quotes around values in XAML. See

Figure 2-34.

Figure 2-33.  Select the List View Page template and name the page
Microsoft.xaml

Figure 2-34.  Add Title = "Microsoft Books" and Padding = "20,20"

Chapter 2 Introduction to Xamarin Forms

35

	 27.	 In Solution Explorer, double-click the MainPage.

xaml page in the shared .NET Standard project, to

see the XAML. Also, note that when you expand the

XAML page, there is a code behind file associated

with it in Solution Explorer. See Figure 2-35.

Figure 2-35.  Each XAML file has a related code behind the xaml.cs file

	 28.	 Replace the Label view with a StackLayout that

contains a button with the following markup.

Replace this

 <Label Text="Welcome to Xamarin.Forms!"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

with this

 <StackLayout>

 <Button Margin="20,20"

 WidthRequest="100"

 Text="Press to see ListView Page">

 </Button>

 </StackLayout>

Chapter 2 Introduction to Xamarin Forms

36

Note N ewer versions of Visual Studio may already have the
StackLayout on the default template. If so, just replace the Label with
the Button and keep the existing StackLayout.

	 29.	 Now add a clicked event to the button…

Your code should now look like this in MainPage.xaml:

 <StackLayout>

 <Button Margin="20,20"

 WidthRequest="100"

 Text="Press to see ListView Page"

 Clicked="MicrosoftBooks_Clicked">

 </Button>

 </StackLayout>

	 30.	 Open the code behind page, MainPage.xaml.cs, and

add an event handler for MicrosoftBooks_Clicked

after the MainPage constructor, if one is not already

there, as follows:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using Xamarin.Forms;

Chapter 2 Introduction to Xamarin Forms

37

namespace BookLists

{

 public partial class MainPage : ContentPage

 {

 public MainPage()

 {

 InitializeComponent();

 }

 �private void MicrosoftBooks_Clicked(object

sender, EventArgs e)

 {

 Navigation.PushAsync(new Microsoft());

 }

 }

}

	 31.	 Open App.xaml.cs and comment out the code

to start the MainPage and replace it by starting a

NavigationPage. You can find pages in the solution

by typing in the search window in Solution Explorer.

Here you see two app.xaml files: one in the shared

.NET Standard project, and one in the UWP project.

The user interface (UI) code goes in the shared .NET

Standard project. See Figure 2-36.

Chapter 2 Introduction to Xamarin Forms

38

 public App ()

 {

 InitializeComponent();

 // MainPage = new BookLists.MainPage();

 �MainPage = new NavigationPage(new

MainPage());

 }

	 32.	 Select the UWP head project, or whichever head

project you desire as the Startup project. Run the

app, and you should be able to navigate to the

ListPage and back to the MainPage.

	 33.	 Open MainPage.xaml and modify the text property

to "Microsoft Books"

Figure 2-36.  Searching on app.xaml in Solution Explorer yields two
sets. Use the one in BookLists.

Chapter 2 Introduction to Xamarin Forms

39

	 35.	 You should see the Microsoft Books ListView page

and a list of items, as well as a tapped event handler,

when you click on an item. See Figure 2-38.

Figure 2-37.  See the home Navigation page MainPage.xaml

 <StackLayout>

 <Button Margin=" 20,20"

 Text="Microsoft Books"

 Clicked="MicrosoftBooks_Clicked">

 </Button>

 </StackLayout>

	 34.	 Run the app and click the Microsoft Books button.

Then navigate to the Microsoft Books ListView page.

See Figure 2-37.

Chapter 2 Introduction to Xamarin Forms

40

Congratulations! You have just created your first Xamarin app.

�Project 2-2: Working with the User Interface
Time Estimate

15 Minutes

In this project, you will create a user interface (UI) and employ the

StackLayout and GridLayout classes. These are very popular building blocks

for your UI. StackLayout flows similarly to an HTML page, with UI items that

relate to each other, in a vertical or horizontal stack, for example. GridLayout

is useful for layouts that are best defined by rows and columns. For example,

Figure 2-38.  By selecting Item, you will see a message that an item
was tapped

Chapter 2 Introduction to Xamarin Forms

41

StackLayout might be good for the phone, as you typically scroll up and

down in a phone app, whereas GridLayout might be good for a tablet, to help

users take advantage of all the additional real estate on the device.

	 1.	 Continue with the same app. We will now place four

buttons on the main page. Replace the StackLayout

markup XAML in MainPage.xaml with the following

markup:

 <StackLayout>

 <Button Margin="20,20"

 WidthRequest="100"

 Text="Microsoft Books"

 Clicked="MicrosoftBooks_Clicked">

 </Button>

 <Button Margin="20,20"

 WidthRequest="100"

 Text="Programming"

 Clicked="Programming_Clicked">

 </Button>

 <Button Margin="20,20"

 WidthRequest="100"

 Text="Mobile"

 Clicked="Mobile_Clicked">

 </Button>

 <Button Margin="20,20"

 WidthRequest="100"

 Text="Machine Learning"

 Clicked="MachineLearning_Clicked">

 </Button>

 </StackLayout>

Chapter 2 Introduction to Xamarin Forms

42

	 2.	 Create clicked event handlers for each button and

leave the new handlers empty for now, as follows in

MainPage.xaml.cs:

namespace BookLists

{

 public partial class MainPage : ContentPage

 {

 public MainPage()

 {

 InitializeComponent();

 }

 �private void MicrosoftBooks_Clicked(object

sender, EventArgs e)

 {

 Navigation.PushAsync(new Microsoft());

 }

 �private void Programming_Clicked(object sender,

EventArgs e)

 {

 }

 �private void Mobile_Clicked(object sender,

EventArgs e)

 {

 }

 �private void MachineLearning_Clicked(object

sender, EventArgs e)

 {

 }

 }

}

Chapter 2 Introduction to Xamarin Forms

43

	 3.	 In a stack layout, the children are displayed in the

order they appear in the XAML. Also, the default

StackLayout orientation is vertical. Run the app,

and you should see the buttons listed vertically, as

in Figure 2-39.

Figure 2-39.  All the new buttons are displayed

Chapter 2 Introduction to Xamarin Forms

44

	 4.	 You may be wondering why the buttons stretch

across the width of the page, although we

have specified WidthRequest only to 100. That

is because the default value for StackLayout

HorizontalOptions with a vertical orientation is

FillAndExpand. These sizes are not pixels. Instead,

they are device-independent units recognized

independently by each platform. Let’s modify each

button to include the following:

HorizontalOptions="Center"

WidthRequest ="300"

This StackLayout XAML should look like the

following:

 <StackLayout>

 <Button Margin="20,20"

 WidthRequest="300"

 HorizontalOptions="Center"

 Text="Microsoft Books"

 �Clicked="MicrosoftBooks_Clicked">

</Button>

 <Button Margin="20,20"

 WidthRequest="300"

 HorizontalOptions="Center"

 Text="Programming"

 Clicked="Programming_Clicked"></Button>

 <Button Margin="20,20"

 WidthRequest="300"

 HorizontalOptions="Center"

 Text="Mobile"

 Clicked="Mobile_Clicked"></Button>

Chapter 2 Introduction to Xamarin Forms

45

 <Button Margin="20,20"

 WidthRequest="300"

 HorizontalOptions="Center"

 Text="Machine Learning"

 �Clicked="MachineLearning_Clicked">

</Button>

 </StackLayout>

	 5.	 Now run it to see the resized buttons in Figure 2-40.

Figure 2-40.  Buttons are now displayed centered, with a width
of 300

Chapter 2 Introduction to Xamarin Forms

46

	 6.	 Comment out the StackLayout XAML, as we will

use this later. To comment out a section of code

in Visual Studio, select the desired code that you

want to comment and then press CTRL+K and then

CTRL+C. (To uncomment, use CTRL+K, CTRL+U.)

 <!--<StackLayout>

 <Button Margin="20,20"

 WidthRequest="300"

 HorizontalOptions="Center"

 Text="Microsoft Books"

 �Clicked="MicrosoftBooks_Clicked">

</Button>

 <Button Margin="20,20"

 WidthRequest="300"

 HorizontalOptions="Center"

 Text="Programming"

 Clicked="Programming_Clicked"></Button>

 <Button Margin="20,20"

 WidthRequest="300"

 HorizontalOptions="Center"

 Text="Mobile"

 Clicked="Mobile_Clicked"></Button>

 <Button Margin="20,20"

 WidthRequest="300"

 HorizontalOptions="Center"

 Text="Machine Learning"

 �Clicked="MachineLearning_Clicked">

</Button>

 </StackLayout>-->

Chapter 2 Introduction to Xamarin Forms

47

	 7.	 Now let’s add a grid, as follows, directly below

the commented StackLayout XAML. GridLayout

uses row definitions and column definitions to

set up the format of the grid. Star (*) sizing means

the row or column will use up all the available

space proportionally. For example, if you have two

columns that use * and *, each will be 50 percent

of the available width. If you specify the first as *

and the second as 2*, the first will be one-third of

the width and the second will be two-thirds of the

width available. A height or width set to Auto in

the definitions will size automatically to the largest

value in the row or column.

 <Grid>

 <Grid.RowDefinitions>

 �<RowDefinition Height="200"></RowDefinition>

 �<RowDefinition Height="200"></RowDefinition>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 �<ColumnDefinition Width="*">

</ColumnDefinition>

 �<ColumnDefinition Width="*">

</ColumnDefinition>

 </Grid.ColumnDefinitions>

 �<Button Grid.Row="0" Grid.Column="0"

Margin="20,20"

 HorizontalOptions="Center"

 WidthRequest="300"

 Text="Microsoft Books"

 �Clicked="MicrosoftBooks_Clicked">

</Button>

Chapter 2 Introduction to Xamarin Forms

48

 �<Button Grid.Row="0" Grid.Column="1"

Margin="20,20"

 HorizontalOptions="Center"

 WidthRequest="300"

 Text="Programming"

 Clicked="Programming_Clicked"></Button>

 �<Button Grid.Row="1" Grid.Column="0"

Margin="20,20"

 HorizontalOptions="Center"

 WidthRequest="300"

 Text="Mobile"

 Clicked="Mobile_Clicked"></Button>

 �<Button Grid.Row="1" Grid.Column="1"

Margin="20,20"

 HorizontalOptions="Center"

 WidthRequest="300"

 Text="Machine Learning"

 �Clicked="MachineLearning_Clicked">

</Button>

 </Grid>

	 8.	 Run it, and you should see something like Figure 2-41.

Chapter 2 Introduction to Xamarin Forms

49

Figure 2-41.  Using GridLayout for buttons

Now let’s look at how we use these in tablet and phone form factors.

�Project 2-3: Dealing with Tablet and Phone
Form Factors
Time Estimate

10 Minutes

In this task, you will use XAML and code behind to control your layout

form factors for a tablet and a phone. ScrollView can be used in a phone

form factor to represent the main page of an application. Many phone

apps are typically used in portrait or landscape mode and have a single

column which you must scroll down to see all the content. In a tablet form

factor, the screen is wider, and a grid view on a main page can be used to

Chapter 2 Introduction to Xamarin Forms

50

maximize the real estate, because one can easily create columns. With

that said, it is not uncommon to mix and match grid and stack layouts to

achieve the desired interface throughout the application.

	 1.	 Uncomment the StackLayout code, so that both

the grid and stack layouts are uncommented and

run the app. You will only see the grid layout, if it

is below the stack layout. This is because only one

view can be returned for a page, and the last one in

wins. We will fix that next. See Figure 2-42.

Figure 2-42.  Only the grid view shows when both layouts are
uncommented. The last one in wins.

Chapter 2 Introduction to Xamarin Forms

51

	 2.	 Try: {What we would like to do is use the stack

layout for the phone and the grid layout for the

tablet. First, let’s wrap both the grid and stack

layout into one StackLayout view. Each section

of the XAML can expand or contract using the –

and + symbols on the left edge. Contract both grid

and stack Layout sections, select both sections

contracted, right-click and select Surround With…

StackLayout.} See Figure 2-43.

Figure 2-43.  Selecting Surround With…

	 3.	 Catch: {Visual Studio may surround the code with

a grid by default. Change it to a stack layout.} See

Figure 2-44.

Chapter 2 Introduction to Xamarin Forms

52

Figure 2-45.  Both the Grid and StackLayout views are displayed
when wrapped into a StackLayout

Figure 2-44.  StackLayout surrounds both StackLayout and Grid

	 4.	 Run the app, and you will see that both sections are

displayed on the page, which is almost where we

want to be. See Figure 2-45.

Chapter 2 Introduction to Xamarin Forms

53

	 5.	 Now let’s make only the phone version view

available on the phone and hide the tablet view,

then make only the tablet view display on a tablet

and hide the phone view. To do so, add a Name to

the Tablet section called TabletView and the Phone

section called PhoneView in the XAML, so we can

refer to it in the code behind.

 <StackLayout>

 <StackLayout x:Name="PhoneView">

...

 <Grid x:Name="TabletView">

 </StackLayout>

	 6.	 After collapsing the buttons, it should look like

Figure 2-46.

Chapter 2 Introduction to Xamarin Forms

54

	 7.	 Use Device.Idiom to detect if the device running

this app is a phone in the code behind. In MainPage.

xaml.cs, add this code in the constructor, right

after InitializeComponent(). If it is a phone that is

running the app, we are going to hide the tablet view

and show the phone view and vice-versa.

 if (Device.Idiom == TargetIdiom.Phone)

 {

 TabletView.IsVisible = false;

 PhoneView.IsVisible = true;

 }

Figure 2-46.  MainPage.xaml should look like this

Chapter 2 Introduction to Xamarin Forms

55

 else

 {

 TabletView.IsVisible = true;

 PhoneView.IsVisible = false;

 }

	 8.	 Build the .NET Standard project and run the app in

the desired phone and tablet emulators or attached

devices. For example, right-click the Android project

and select as startup, then select the 5" KitKat. Run.

See Figures 2-47 and 2-48.

Figure 2-47.  Right-click Android project, set to startup, and then
Select 5" KitKat from the drop-down menu

Chapter 2 Introduction to Xamarin Forms

56

	 9.	 Then select UWP as the startup project and select

Local Machine to run the tablet view on your laptop

or desktop. See Figure 2-49.

Figure 2-48.  The Android phone view shows a stack layout

Chapter 2 Introduction to Xamarin Forms

57

	 10.	 Right-click Android project and set as startup. Select

the 10.1" Marshmallow Tablet in Android from the

emulator drop-down. See Figure 2-50.

Figure 2-49.  Tablet view shows a grid layout

Figure 2-50.  Selecting the 10.1" Marshmallow tablet

Chapter 2 Introduction to Xamarin Forms

58

Note S ome emulators for older tablet models may not report back
the expected device idiom, as in the case of older actual devices,
such as the 7" KitKat tablet. For testing Android device tablet
idioms, use the 10.1" Marshmallow tablet in Android. If you do not
see this listed in the Android emulators drop-down, you may have
to download it in the Visual Studio Emulator for Android app. See
Figures 2-51 and 2-52.

Figure 2-51.  Start the Visual Studio Emulator for Android app, if
needed, to download and install a 10.1" Marshmallow emulator

Chapter 2 Introduction to Xamarin Forms

59

�Project 2-4: Working with Images
Time Estimate

15 Minutes

	 1.	 In this project, you will learn how to access images

locally, as embedded resources and Uniform

Resource Identifiers (URIs). Also, you will use

gesture recognizers to provide click event handlers.

You could set the Button Image property to the

image file name, but this really behaves differently

across the platforms and causes many headaches.

Plus, you cannot easily use aspect ratios on a button

image. It is simpler to replace the buttons with

image views. One problem, however, is that the

image does not have a click event. So, we can use

a gesture handler for this on the image, which will

provide us a tapped event handler.

Figure 2-52.  Android tablet shows Grid view

Chapter 2 Introduction to Xamarin Forms

60

	 2.	 Let’s replace the button text with images. But how?

Images can be read locally from file or as embedded

resources or can be downloaded from a URI.

	 3.	 To access local images from files, each file can be

added to each application project and referenced

from Xamarin Forms’ shared .NET Standard code.

To use a single image across all apps, the same

file name must be used on every platform, and

it should be a valid Android resource name (i.e.,

only lowercase letters, numerals, underscores, and

periods are allowed. Also, the image cannot begin

with a number).

	 4.	 For iOS, place images in the Resources folder with

Build Action: BundleResource. Retina versions

of the image should also be supplied—at two and

three times the resolution, with @2x or @3x suffixes

on the file name, before the file extension (e.g.,

myimage@2x.png and myimage@3x.png).

	 5.	 For Android, place images in the Resources/

drawable directory with Build Action:

AndroidResource. High- and low-DPI versions of an

image can also be supplied (in appropriately named

resources subdirectories, such as drawable-ldpi,

drawable-hdpi, and drawable-xhdpi).

	 6.	 For Windows/UWP, place images in the application’s

root directory with Build Action: Content.

Chapter 2 Introduction to Xamarin Forms

61

	 7.	 We are going to use embedded resources in our

example. Create a new folder in the .NET Standard

project called Images by right-clicking the project

and selecting Add ➤ New Folder. See Figure 2-53.

Figure 2-53.  Add New Folder and call it Images

	 8.	 Add all four existing images to the Images folder in

the Shared .NET Standard project from the book’s

/Assets folder or any set of four images that are of

the dimensions 800 wide × 450 high. Right-click the

Images folder and select Add ➤ Existing Item. See

Figure 2-54.

Chapter 2 Introduction to Xamarin Forms

62

	 9.	 Select all four images in the .NET Standard Images

folder and set the Build Action to Embedded

resource. See Figure 2-55.

Figure 2-54.  Adding existing images to the project Images folder from
book /Assets folder

Chapter 2 Introduction to Xamarin Forms

63

	 10.	 Add a class to the .NET Standard project and call it

ImageResourceExtension. See Figure 2-56.

Figure 2-55.  Setting all four images to the Embedded resource Build
Action

Chapter 2 Introduction to Xamarin Forms

64

	 11.	 We must add a method to do a translation lookup for

the XAML markup, by inheriting IMarkupExtension.

Change the class to public and add the following

code and using statements:

using System;

using Xamarin.Forms;

using Xamarin.Forms.Internals;

using Xamarin.Forms.Xaml;

using System.Reflection;

namespace BookLists

{

 �// You exclude the 'Extension' suffix when using in

// XAML markup

Figure 2-56.  Adding a new class to the project called
ImageResourceExtension.cs

Chapter 2 Introduction to Xamarin Forms

65

 [Preserve(AllMembers = true)]

 [ContentProperty("Source")]

 �public class ImageResourceExtension :

IMarkupExtension

 {

 public string Source { get; set; }

 �public object ProvideValue(IServiceProvider

serviceProvider)

 {

 if (Source == null)

 return null;

 �// Do your translation lookup here, using

// whatever method you require

 �var imageSource = ImageSource.

FromResource(Source, Assembly.

GetExecutingAssembly());

 return imageSource;

 }

 }

}

	 12.	 Here is the new grid markup for the tablet version,

using images, gesture recognizers, and labels. Verify

your XAML and copy it, if necessary, to match for

TabletView:

 �<Grid x:Name="TabletView"

VerticalOptions="FillAndExpand" Horizontal

Options="FillAndExpand">

 <Grid.RowDefinitions>

Chapter 2 Introduction to Xamarin Forms

66

 �<RowDefinition Height="40">

</RowDefinition>

 �<RowDefinition Height="*">

</RowDefinition>

 �<RowDefinition Height="Auto">

</RowDefinition>

 �<RowDefinition Height="*">

</RowDefinition>

 �<RowDefinition Height="Auto">

</RowDefinition>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 �<ColumnDefinition Width="*">

</ColumnDefinition>

 �<ColumnDefinition Width="*">

</ColumnDefinition>

 </Grid.ColumnDefinitions>

 �<Label Grid.Row="0" Grid.Column="0" Grid.

ColumnSpan="2" VerticalOptions="Center"

HorizontalOptions="Center"

FontSize="Medium" FontAttributes="Bold"

Text="Book List"></Label>

 �<Image Grid.Row="1" Grid.

Column="0" Aspect="AspectFill"

Source="{local:ImageResource BookLists.

Images.Microsoft.png}" >

 <Image.GestureRecognizers>

 <TapGestureRecognizer

 NumberOfTapsRequired="1"

 Tapped="MicrosoftBooks_Clicked"/>

 </Image.GestureRecognizers>

 </Image>

Chapter 2 Introduction to Xamarin Forms

67

 �<Label Grid.Row="2" Grid.Column="0"

VerticalOptions="Center" FontSize="Small"

HorizontalTextAlignment="Center"

TextColor="Blue" Text="Microsoft"></Label>

 �<Image Grid.Row="3" Grid.Column="0"

Aspect="AspectFill" Source="{local:

ImageResource BookLists.Images.Programming.

png}" >

 <Image.GestureRecognizers>

 <TapGestureRecognizer

 NumberOfTapsRequired="1"

 Tapped="Programming_Clicked"/>

 </Image.GestureRecognizers>

 </Image>

 �<Label Grid.Row="4" Grid.Column="0"

VerticalOptions="Center" FontSize="Small"

HorizontalTextAlignment="Center"

TextColor="Blue" Text="Programming">

</Label>

 �<Image Grid.Row="1" Grid.Column="1"

Aspect="AspectFill" Source="{local:Image

Resource BookLists.Images.Mobile.png}" >

 <Image.GestureRecognizers>

 <TapGestureRecognizer

 NumberOfTapsRequired="1"

 Tapped="Mobile_Clicked"/>

 </Image.GestureRecognizers>

 </Image>

Chapter 2 Introduction to Xamarin Forms

68

 �<Label Grid.Row="2" Grid.Column="1"

VerticalOptions="Center" FontSize="Small"

HorizontalTextAlignment="Center"

TextColor="Blue" Text="Mobile"></Label>

 �<Image Grid.Row="3" Grid.

Column="1" Aspect="AspectFill"

Source="{local:ImageResource BookLists.

Images.MachineLearning.png}" >

 <Image.GestureRecognizers>

 <TapGestureRecognizer

 NumberOfTapsRequired="1"

 Tapped="MachineLearning_Clicked"/>

 </Image.GestureRecognizers>

 </Image>

 �<Label Grid.Row="4" Grid.

Column="1" VerticalOptions="Center"

FontSize="Small" HorizontalTextAlignment

="Center" TextColor="Blue" Text="Machine

Learning"></Label>

 </Grid>

	 13.	 Run the app and click the Microsoft image on the

home screen. You will see the mocked-up data

ListView page. See Figure 2-57.

Chapter 2 Introduction to Xamarin Forms

69

Figure 2-57.  Embedded images now show on MainPage and are
clickable

�Project 2-5: Working with ListView
Time Estimate

10 Minutes

In this project, you will use the ListViewPage template with TextCell

and ViewCell and the Caching strategy for recycling elements. You will use

the ListView item, header, and footer templates.

	 1.	 Add a folder called ViewModels to the Booklists

project. See Figure 2-58.

Chapter 2 Introduction to Xamarin Forms

70

	 2.	 Add exiting item from the /Assets folder for the book

called BookViewModel.cs. This code contains a

public class called Item, which has values for Item,

Detail, and URL. It also has ObservableCollection,

which has populated a few sample data records for

Books. See Figure 2-59.

Figure 2-58.  Adding new folder called ViewModels

Figure 2-59.  Add existing item BookViewModel.cs to ViewModels
folder

Chapter 2 Introduction to Xamarin Forms

71

Here is the code in BookViewModel.cs that uses

MVVM and Databinding. The MVVM pattern

enforces a separation between three software

layers. The underlying data is called the Model.

The XAML user interface is called the View,

and an intermediary that sits between the View

and the Model is called the ViewModel. The

View and the ViewModel are often connected

through data bindings that are defined in the

XAML file. BindingContext for View is usually

an instance of ViewModel. Note the use of the

INotifyPropertyChanged interface. The class

doesn’t invoke the PropertyChanged event unless

the property has actually changed.

using System;

using System.Collections.Generic;

using System.Collections.ObjectModel;

using System.ComponentModel;

using System.Runtime.CompilerServices;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Input;

using Xamarin.Forms;

using System.Linq;

namespace BookLists.ViewModels

{

 �public class MicrosoftBooksViewModel :

INotifyPropertyChanged

 {

Chapter 2 Introduction to Xamarin Forms

72

 public ObservableCollection<Item> Items { get; }

 �public ObservableCollection<Grouping<string,

Item>> ItemsGrouped { get; }

 public MicrosoftBooksViewModel()

 {

 Items = new ObservableCollection<Item>(new[]

 {

 �new Item { Text = "Beginning Entity

Framework Core 2.0",

 �URL ="https://www.apress.com/us/

book/9781484233740",

 �Detail = "Use the valuable Entity

Framework Core 2.0 tool in ASP.

NET and the .NET Framework to

eliminate the tedium around

accessing databases and the data

they contain. Entity Framework

Core 2.0 greatly simplifies access

to relational databases such as

SQL Server that are commonly

deployed in corporate settings.

By eliminating tedious data

access code that developers are

otherwise forced to use, Entity

Framework Core 2.0 enables you to

work directly with the data in a

database through domain-specific

objects and methods." },

 �new Item { Text = "Beginning Windows

Mixed Reality Programming, For HoloLens

and Mixed Reality Headsets",

Chapter 2 Introduction to Xamarin Forms

73

 �URL ="https://www.apress.com/us/

book/9781484227688",

 �Detail = "Develop applications

and experiences for Microsoft’s

HoloLens and other Windows mixed

reality devices. This easy-to-

follow guide removes the mystery

behind creating amazing augmented

reality experiences. Mixed reality

development tools and resources

are provided. Beginning Windows

Mixed Reality Programming clearly

explains all the nuances of mixed

reality software development.

You'll learn how to create 3D

objects and holograms, interact

with holograms using voice commands

and hand gestures, use spatial

mapping and 3D spatial sound,

build with Microsoft's HoloToolkit,

create intuitive user interfaces,

and make truly awe-inspiring mixed

reality experiences. Start building

the holographic future today!" },

 �new Item { Text = "Business in Real-

Time, Using Azure IoT and Cortana

Intelligence Suite Driving Your Digital

Transformation",

 �URL ="https://www.apress.com/us/

book/9781484226490",

Chapter 2 Introduction to Xamarin Forms

74

 �Detail = "Learn how today’s

businesses can transform themselves

by leveraging real-time data

and advanced machine learning

analytics. This book provides

prescriptive guidance for architects

and developers on the design and

development of modern Internet of

Things(IoT) and Advanced Analytics

solutions.In addition, Business

in Real - Time Using Azure IoT and

Cortana Intelligence Suite offers

patterns and practices for those

looking to engage their customers

and partners through Software

-as- a - Service solutions that

work on any device. Whether you're

working in Health & Life Sciences,

Manufacturing, Retail, Smart

Cities and Buildings or Process

Control, there exists a common

platform from which you can create

your targeted vertical solutions.

Business in Real-Time Using Azure

IoT and Cortana Intelligence Suite

uses a reference architecture as

a road map. Building on Azure’s

PaaS services, you'll see how a

solution architecture unfolds that

demonstrates a complete end - to -

end IoT and Advanced Analytics

scenario." },

Chapter 2 Introduction to Xamarin Forms

75

 �new Item { Text = "Cyber Security on

Azure, An IT Professional’s Guide to

Microsoft Azure Security Center",

 �URL ="https://www.apress.com/us/

book/9781484227398",

 �Detail = "Prevent destructive

attacks to your Azure public

cloud infrastructure, remove

vulnerabilities, and instantly

report cloud security readiness.

This book provides comprehensive

guidance from a security insider's

perspective. Cyber Security on

Azure explains how this 'security

as a service' (SECaaS) business

solution can help you better manage

security risk and enable data

security control using encryption

options such as Advanced Encryption

Standard(AES) cryptography.Discover

best practices to support network

security groups, web application

firewalls, and database auditing

for threat protection. Configure

custom security notifications of

potential cyberattack vectors

to prevent unauthorized access

by hackers, hacktivists, and

industrial spies." },

 �new Item { Text = "Essential Angular

for ASP.NET Core MVC",

Chapter 2 Introduction to Xamarin Forms

76

 �URL ="https://www.apress.com/us/

book/9781484229156",

 �Detail = "Angular 5 and .NET Core

2 updates for this book are now

available. Follow the Download

Source Code link for this book

on the Apress website. Discover

Angular, the leading client-side

web framework, from the point

of view of an ASP.NET Core MVC

developer. Best-selling author

Adam Freeman brings these two key

technologies together and explains

how to use ASP.NET Core MVC to

provide back-end services for

Angular applications. This fast -

paced, practical guide starts from

the nuts and bolt and gives you

the knowledge you need to combine

Angular(from version 2.0 up) and

ASP.NET Core MVC in your projects.

" },

 });

 var sorted = from item in Items

 orderby item.Text

 �group item by item.Text[0].

ToString() into itemGroup

 �select new Grouping<string,

Item>(itemGroup.Key,

itemGroup);

Chapter 2 Introduction to Xamarin Forms

77

 �ItemsGrouped = new ObservableCollection

<Grouping<string, Item>>(sorted);

 RefreshDataCommand = new Command(

 async () => await RefreshData());

 }

 public ICommand RefreshDataCommand { get; }

 async Task RefreshData()

 {

 IsBusy = true;

 //Load Data Here

 await Task.Delay(2000);

 IsBusy = false;

 }

 bool busy;

 public bool IsBusy

 {

 get { return busy; }

 set

 {

 busy = value;

 OnPropertyChanged();

 �((Command)RefreshDataCommand).

ChangeCanExecute();

 }

 }

Chapter 2 Introduction to Xamarin Forms

78

 �public event PropertyChangedEventHandler

PropertyChanged;

 �void OnPropertyChanged([CallerMemberName]string

propertyName = "") =>

 �PropertyChanged?.Invoke(this, new Property

ChangedEventArgs(propertyName));

 public class Item

 {

 public string Text { get; set; }

 public string Detail { get; set; }

 public string URL { get; set; }

 public override string ToString() => URL;

 }

 �public class Grouping<K, T> :

ObservableCollection<T>

 {

 �public K Key { get; private set; }

 public Grouping(K key, IEnumerable<T> items)

 {

 Key = key;

 foreach (var item in items)

 this.Items.Add(item);

 }

 }

 }

}

	 3.	 Open the code behind page Microsoft.xaml.cs.

	 4.	 Add this line under InitializeComponent():

BindingContext = new MicrosoftBooksViewModel();

Chapter 2 Introduction to Xamarin Forms

79

	 5.	 You will also need to add this using statement:

using BookLists.ViewModels;

	 6.	 Comment out the following lines:

 // Items = new ObservableCollection<string>

 // {

 // "Item 1",

 // "Item 2",

 // "Item 3",

 // "Item 4",

 // "Item 5"

 // };

 //MyListView.ItemsSource = Items;

	 7.	 Comment out the Handle_ItemTapped event code

and add the Handle_ItemSelected event handler

with this code:

 �void Handle_ItemSelected(object sender,

SelectedItemChangedEventArgs e)

 {

 if (e.SelectedItem == null)

 return;

 �// await DisplayAlert("Selected",

// e.SelectedItem.ToString(), "OK");

 �// navigate to the URL with the native

// browser

 �Device.OpenUri(new Uri(e.SelectedItem.

ToString()));

Chapter 2 Introduction to Xamarin Forms

80

 //Deselect Item

 ((ListView)sender).SelectedItem = null;

 }

 }

	 8.	 Your Microsoft.xaml.cs file should now look like this:

using BookLists.ViewModels;

using System;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace BookLists

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class Microsoft : ContentPage

 {

 public Microsoft()

 {

 InitializeComponent();

 �BindingContext = new

MicrosoftBooksViewModel();

 �// Items = new

// ObservableCollection<string>

 // {

 // "Item 1",

 // "Item 2",

 // "Item 3",

 // "Item 4",

 // "Item 5"

 // };

 //MyListView.ItemsSource = Items;

 }

Chapter 2 Introduction to Xamarin Forms

81

 �void Handle_ItemSelected(object sender,

SelectedItemChangedEventArgs e)

 {

 if (e.SelectedItem == null)

 return;

 �// await DisplayAlert("Selected",

// e.SelectedItem.ToString(), "OK");

 // navigate to the URL with the native browser

 �Device.OpenUri(new Uri(e.SelectedItem.

ToString()));

 }

 }

}

	 9.	 Open Microsoft.xaml and replace the ListView

with the following XAML (note that it uses a custom

ViewCell with a Header, ItemTemplate, and

Footer).

 �<ListView x:Name="BookListView"

ItemsSource="{Binding ItemsGrouped}"

 ItemSelected="Handle_ItemSelected"

 HasUnevenRows="true"

 GroupShortNameBinding="{Binding Key}"

 IsGroupingEnabled="true"

 GroupDisplayBinding="{Binding Key}"

 IsPullToRefreshEnabled="true"

 CachingStrategy="RecycleElement"

 IsRefreshing="{Binding IsBusy, Mode=OneWay}"

 RefreshCommand="{Binding RefreshDataCommand}"

 >

Chapter 2 Introduction to Xamarin Forms

82

 <!--Built in Cells-->

 <!--<ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding .}" />

 </DataTemplate>

 </ListView.ItemTemplate>-->

 <!--Custom View Cells-->

 <ListView.Header>

 <StackLayout Padding="10"

 Orientation="Horizontal"

 HorizontalOptions="FillAndExpand"

 BackgroundColor="#dadada">

 <Label Text="Microsoft and .NET Books"

 HorizontalTextAlignment="Center"

 HorizontalOptions="FillAndExpand"

 TextColor="Black"

 FontAttributes="Bold"/>

 </StackLayout>

 </ListView.Header>

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <StackLayout>

 <Label Text="{Binding Text}"

 �Style="{DynamicResource

ListItemTextStyle}"

 FontAttributes="Bold"/>

Chapter 2 Introduction to Xamarin Forms

83

 <Label Text="{Binding Detail}"

 �Style="{DynamicResource

ListItemDetailTextStyle}"/>

 </StackLayout>

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 <ListView.Footer>

 <StackLayout Padding="10"

 Orientation="Horizontal"

 HorizontalOptions="FillAndExpand"

 BackgroundColor="#dadada">

 <Label Text="Visit www.apress.com"

 HorizontalTextAlignment="Center"

 HorizontalOptions="FillAndExpand"

 TextColor="Black"

 FontAttributes="Bold"/>

 </StackLayout>

 </ListView.Footer>

 </ListView>

	 10.	 Run the app and click the Microsoft image on the

home screen. You will see something like Figures 2-60

and 2-61.

Chapter 2 Introduction to Xamarin Forms

84

Figure 2-60.  ListView on Android tablet with header, groupings,
and footer

Chapter 2 Introduction to Xamarin Forms

85

Figure 2-61.  ListView on UWP with header, groupings, and
footer

Chapter 2 Introduction to Xamarin Forms

86

	 11.	 Try: Click an item in the list, and it will open an

external browser to the desired URL. See Figure 2-62.

Figure 2-62.  URL displayed in native browser on device

	 12.	 Catch: The UWP ListView may have an error only

on clicking and getting the correct selected item in

the list when using the ListView group optionally.

(Android and iOS should work.) This has been

fixed with version 2.5.0.280555 of Xamarin Forms.

Right-click the solution and select Manage NuGet

Packages to verify that you have a minimum version

of 2.5.0.280555. If not, check the updates panel to

install. See Figure 2-63.

Chapter 2 Introduction to Xamarin Forms

87

	 13.	 One important property on the ListView,

especially for Android apps, is CachingStrategy.

Note that the ListView template page has it set

to "RecycleElement". This is not the default on

ListView for backward compatibility and must

be specified to take effect. This option provides

significant performance improvements, particularly

in Android. RetainElement is the default, and

it’s not optimal, especially when dealing with

large lists. However, the UWP platform ignores

ListViewCachingStrategy.RetainElement,

because it always uses caching to improve

performance. See Figure 2-64.

Figure 2-63.  Verifying that the installed Xamarin Forms NuGet
package is a minimum version of 2.5.0.280555. If not, select the
Updates tab and intall it.

Chapter 2 Introduction to Xamarin Forms

88

�Summary
In this chapter, you created a new Xamarin Forms application. The

application can run on Android, UWP, and, optionally, iOS, if connected

with a Mac server. As this is a cross platform app, you can use any mix

of the platform projects, depending on your development environment

(Mac or Windows). You enhanced the app with StackLayout and

GridLayout to have a main navigation page and used device form factors

for phones and tablets, with device specific logic. The main page uses

embedded resource images. A ListView page template was added with a

customization for selection event handlers and content. Next up? You get

to learn Azure. Let the games begin!

Figure 2-64.  Specify CachingStrategy="RecycleElement", as it is
not a default

Chapter 2 Introduction to Xamarin Forms

89© Russell Fustino 2018
R. Fustino, Azure and Xamarin Forms, https://doi.org/10.1007/978-1-4842-3561-4_3

CHAPTER 3

Introduction to Azure:
A Developer’s
Perspective
From a developer’s perspective, Azure is about getting your apps to market

faster. Azure is a worldwide network of managed service centers that

facilitate building, testing, and deploying apps. You can build applications

using any dev tool or language, including Node.js, Java, and .NET, with

best-of-class tools in Visual Studio and Visual Studio Code, on either

your PC or Mac. But wait, there’s more! You have a choice of more than

100 services to provide your users richer experiences, whether through

responsive web apps, native mobile apps, or new features, such as mixed

reality and bots. Azure provides an end-to-end management experience by

using your choice of management tools, including Power Shell, BASH, the

Azure portal, or REST APIs. We will look at how Azure can provide cross-

device experiences with support for all major mobile platforms.

This chapter will guide you through taking your first steps in working

with Azure and provide a tour of the portal. You will see how to get a free

$200 30-day account, as well as several per-month usage credit options.

This benefit is subject to change. The “free credit” may just do the job of

getting your feet wet in learning Azure, and the recurring monthly credits

may just do the job, period.

90

I will cover the following in this chapter:

•	 Monitoring your billing and usage

•	 Creating a virtual machine

•	 ASP.NET web services

•	 Deploying from GitHub and Visual Studio

•	 Deployment models and resource groups

•	 Azure command-line interface (CLI)

•	 Creating SQL (Structured Query Language) database

and scalability

•	 How to grow your solutions and find useful resources

on azure.microsoft.com related to support and

architectures

•	 How to delete learning resources

Time Estimate
120 Minutes

�Free Azure Accounts and Credits
There are various offers available for free credits on Azure usage,

specifically for developers. In this section, we will look at how to use Azure

for free initially and how to get recurring free credits.

Signing up for a free account is a great way to explore Azure, without

any commitment. As part of the free account, you are getting an Azure

subscription that lets you create, manage, and scale resources and a $200

credit to spend on Azure services for 30 days. You can use those credits to

try out any combination of Azure services.

Chapter 3 Introduction to Azure: A Developer’s Perspective

91

If you do not have a Microsoft account or have used up your free

credits in the past, create a new account at https://signup.live.com and

then join the Visual Studio Dev Essentials program with that account at

www.visualstudio.com/dev-essentials/ and claim some free stuff. See

Figure 3-1.

Figure 3-1.  Visual Studio Dev Essentials benefits

The Free Visual Studio Dev Essentials account is completely free,

and you won’t be charged for anything during the term of usage. Even

when your 30 days are over, Microsoft will not automatically convert

your account to a paid account and start charging you. The only reason

Microsoft asks for a credit card is to verify your identity and prevent fraud.

You can always see the number of remaining days of your trial and

remaining credit when you log on to the Azure portal, so you always know

where you stand. In case you use all your credits, or your 30-day trial is

Chapter 3 Introduction to Azure: A Developer’s Perspective

https://signup.live.com/
http://www.visualstudio.com/dev-essentials/

92

over, Microsoft will notify you, so you can decide if you want to transition

to a pay-as-you-go subscription. If you do, great. You start paying for

the services you want to use. If not, don’t worry, you won’t be billed for

anything, but you will no longer be able to access previous services.

I hope you enjoy your free accounts and make good use of your

$200 credit. In addition to the Azure $200 credit, there are many more

benefits available on the Azure site, including downloads for Visual Studio

Community, Visual Studio for the Mac, and more, so be sure to look at

these great developer benefits.

	 1.	 To start, click the Azure Activate offer for a free

account and a $200 credit. See Figure 3-2.

Figure 3-2.  Activating the free Azure credit

	 2.	 You will then be prompted for personal information.

Fill out the About You, Identity verification by

phone, Identity verification by card, and Agreement

sections. See Figure 3-3.

Chapter 3 Introduction to Azure: A Developer’s Perspective

93

	 3.	 You will then be directed to the Azure portal

welcome page, with usage questions, resources,

tutorials, and webcasts. See Figure 3-4.

Figure 3-3.  Azure free account signup

Chapter 3 Introduction to Azure: A Developer’s Perspective

94

	 4.	 Once the questions have been answered, you can

bookmark this page, to return to it, and then click

Continue to Azure portal. See Figures 3-5 and 3-6.

Figure 3-4.  Azure welcome page

Figure 3-5.  Continue to portal

Chapter 3 Introduction to Azure: A Developer’s Perspective

95

	 5.	 Also, if you have a Visual Studio Professional

Subscription, you can receive a $50 monthly credit,

or, with a Visual Studio Enterprise Subscription, a

$150 monthly credit. See Figure 3-7.

Figure 3-6.  https://portal.azure.com

Chapter 3 Introduction to Azure: A Developer’s Perspective

https://portal.azure.com/

96

	 6.	 If you are a Microsoft Partner, you can receive a

$100 monthly Azure credit through an Action Pack

subscription purchase. For details, see https://

partner.microsoft.com/en-us/membership/

action-pack.

	 7.	 Through the Microsoft startup program BizSpark,

you can receive a $150-per-month Azure credit

for up to five developers. For details, see https://

bizspark.microsoft.com/.

Once you have an Azure subscription, you can start creating and

managing resources in Azure. The easiest way to start doing that is through

the Azure portal.

�Azure Portal
To get to the Azure portal, you can either go to azure.microsoft.com and

click the portal link at the top of the page or simply navigate to portal.

azure.com.

Figure 3-7.  $150 monthly Azure credit for Visual Studio Enterprise

Chapter 3 Introduction to Azure: A Developer’s Perspective

https://partner.microsoft.com/en-us/membership/action-pack
https://partner.microsoft.com/en-us/membership/action-pack
https://partner.microsoft.com/en-us/membership/action-pack
https://bizspark.microsoft.com/
https://bizspark.microsoft.com/

97

After you log on to the portal, you will see the main dashboard. You will

see your recent resources, some health information, and some Get Started

content. See Figure 3-8.

Figure 3-8.  The Azure portal dashboard shows resources, health
information, and help and support, which includes getting started
information

On the left, there is a navigation pane that helps you browse your

resources by type. You can see your virtual machines, databases, or go back

and see all the resources. The list of resources on this navigator includes

only your favorites, and if you click More services, you can see the full

list. You can scroll through the list and mark additional resource types as

favorites. See Figure 3-9.

Chapter 3 Introduction to Azure: A Developer’s Perspective

98

Figure 3-9.  Azure navigation pane. Click More services to see all
choices. Mark your favorites by clicking a star.

Chapter 3 Introduction to Azure: A Developer’s Perspective

99

Use the Search box to filter. Type in a search for SQL. See Figure 3-10.

Figure 3-10.  Search results for SQL

On the top bar, there is a settings area that lets you pick different

themes and change the portal’s language. See Figure 3-11.

Chapter 3 Introduction to Azure: A Developer’s Perspective

100

From the Help button, you can submit support requests and see all

the keyboard shortcuts, which become very useful. For example, you can

always click “?” to show and hide the keyboard shortcuts page and press

the G and slash to get to the search bar and search for resources. See

Figures 3-12 and 3-13.

Figure 3-11.  Azure portal settings for theme and language

Chapter 3 Introduction to Azure: A Developer’s Perspective

101

Figure 3-12.  Azure portal Help menu

Figure 3-13.  Azure portal keyboard shortcuts. Use G+/ to search
resources.

Chapter 3 Introduction to Azure: A Developer’s Perspective

102

Using the smiley face at the top, you can contact support and provide

feedback about your experience with the portal. The portal team listens

carefully and improves the experience, based on customer feedback. See

Figure 3-14.

Figure 3-14.  Azure portal feedback

You also have a notification icon that updates you on any changes

since your last login and shows you your remaining credit. See Figure 3-15.

Chapter 3 Introduction to Azure: A Developer’s Perspective

103

�Billing and Usage
If you want to drill deeper into your billing information, to see how you are

spending your credits, you can go to the subscription section through the

navigator on the left. On the subscription information page, you can see

all your subscriptions, your burn rate, how much you spend per resource,

and, if you click on invoices, your most recent invoices for the subscription.

So, you can get good visibility on where you are spending your money or

trial credits. See Figures 3-16 and 3-17.

Figure 3-15.  Azure notifications with remaining credits

Figure 3-16.  Subscription information

Chapter 3 Introduction to Azure: A Developer’s Perspective

104

Figure 3-17.  Drilling down into resources used and burn rate

Now that we have one of the biggest fears, on measuring costs in Azure,

under control, let’s move on to one of the biggest reasons for using Azure:

the Marketplace.

�Marketplace
The Marketplace is the top destination for all your developer needs,

optimized and certified to run on Azure. It is a great place to find the

solutions you need, in a rich catalog of thousands of end-to-end solutions

and products. For example, later in the chapter, I will show how to

provision a virtual machine with Visual Studio already installed from the

Chapter 3 Introduction to Azure: A Developer’s Perspective

105

Marketplace. This provisioning takes only about 10 minutes. Compare

that if you were to install Visual Studio alone on a standalone machine.

It could take an hour or two. You can also leverage free trials from

independent software vendors (ISVs), to deploy and use the software in

your subscription. Happy surfing in the Marketplace. Let’s get started.

If you press G and N on your keyboard or click the +New link, you can

start creating resources in Azure. You can scroll through the categories and

select which item you would like to create. For example, you can create

Windows or Linux virtual machines from the Compute category, create

web apps from the Web and Mobile category, or create new relational or

NoSQL databases from the Databases category. See Figure 3-18.

Figure 3-18.  Click +New to create a resource

You can also open the Marketplace and see a comprehensive list

of thousands of items, not just from Microsoft, but from other vendors

as well. These items can be provisioned or purchased. You can search

Chapter 3 Introduction to Azure: A Developer’s Perspective

106

everything (search for Hadoop), or explore by categories. Currently, the

Marketplace has about 3,500 items, from numerous vendors, to choose

from. See Figure 3-19.

Figure 3-19.  Search results in Marketplace for Hadoop

Now that you have a handle on the overview of Marketplace, let’s start

using it to provision a virtual machine.

Chapter 3 Introduction to Azure: A Developer’s Perspective

107

�Windows Virtual Machines
One of the earliest uses of Azure was to create virtual machines (VMs).

Why? VMs are the root of any company considering to “lift and shift” data-

center operations to the cloud. For example, instead of running servers

on-site, they can be run from the cloud. Benefits include lower costs for

operation and support and ease of scalability.

Now let’s create a virtual machine in the cloud. You can either search

for the virtual machine image you want or browse through what is

available in the Marketplace. Azure has a huge gallery of virtual machine

images to pick from. There are preconfigured VMs for such things as SQL

and Drupal and complete multi-VM solution templates for larger systems,

such as SharePoint or WebSphere.

If you want to create a Linux VM, you can search for popular images

like Ubuntu, Red Hat, or more, but in this section, you will create a

developer VM Windows 10 machine with Visual Studio installed. We have

lots of different versions to choose from, so, first, search on Visual Studio.

See Figure 3-20.

Chapter 3 Introduction to Azure: A Developer’s Perspective

108

If you have an MSDN subscription, you can select the same for

Windows 10 for UWP dev in this book. You will not be able to do UWP dev

on a Windows Server machine.

	 1.	 After selecting VS Community 2017 (latest release)

on Windows Server 2016, click Create virtual

machine. If you have a MSDB subscription, you can

select the Windows 10 version to create the UWP

apps in this book. At the time of writing, Windows 10

is not available with the free $200 credit offer.

Figure 3-20.  Search results in Visual Studio. Select VS Community
2017 (latest release) on Windows Server 2016.

Chapter 3 Introduction to Azure: A Developer’s Perspective

109

	 2.	 Enter “Demo@pass123” as the password. Choose

a location near you (use this location for the

remainder of this chapter) and the remainder of the

basics, as shown in Figure 3-21. In the Basics settings,

we create a Resource group that is a container of

multiple resources used for an app. In this case,

because we are creating a single VM, we create a

new resource group, using the name “demorg.” If

we group resources under the same name, we can

easily delete them, for example, altogether, by simply

deleting the resource group. Click OK.

Figure 3-21.  Enter basic info for your VM

Chapter 3 Introduction to Azure: A Developer’s Perspective

110

	 3.	 Under Choose a size, click View all, then click on

one of the least expensive options, as you will be

deleting this at the end of this chapter. Select A1

Basic, which will work for this chapter. This machine

will be very sluggish, and it will be a throwaway, as

we are only creating it to demonstrate how to use it.

See Figures 3-22 and 3-23.

Figure 3-22.  Select View all

Figure 3-23.  Pick A1 Basic

	 4.	 Keep all the defaults on the Settings blade and click

OK on the Summary blade. See Figure 3-24.

Chapter 3 Introduction to Azure: A Developer’s Perspective

111

Figure 3-24.  Keep the settings defaults

Chapter 3 Introduction to Azure: A Developer’s Perspective

112

	 5.	 The deployment will take about 15–20 minutes to

complete. You will receive a notification when it

finishes. See Figures 3-25 and 3-26.

Figure 3-25.  Deploying Visual Studio VM

Figure 3-26.  Notification that deployment succeeded

Chapter 3 Introduction to Azure: A Developer’s Perspective

113

	 6.	 While this is deploying, let’s look at a few resources.

Open a new tab in your browser and navigate to the

Azure site and the regions map at http://azure.

microsoft.com/regions. Azure has 50 regions

available in 140 countries. You can visit the Azure

regions page to see a map of all the regions and

decide on the best location to deploy to. Azure offers

scale needed to bring applications closer to users

around the globe, providing data residency and

resiliency options for end customers. See Figure 3-27.

Figure 3-27.  Azure regions map

	 7.	 As for VM sizes, you should choose the right VM for

your workload, based on the number of cores, the

memory, disk drive size, and price. Azure will give

you recommendations based on popular sizes, but

you can also click View all to see more options.

Chapter 3 Introduction to Azure: A Developer’s Perspective

http://azure.microsoft.com/regions
http://azure.microsoft.com/regions

114

	 8.	 Once the deployment completes, you can pin it, so

that it appears on your dashboard, or you can get to

it from the Virtual Machines list on the left pane, or

you can search for it using the search bar.

	 9.	 On the details page, you can monitor and manage this

virtual machine. You can look at the CPU, disk, and

network usage; go to the activity log; and diagnose

problems. You can add additional disks or change

this virtual machine size even after it’s been created.

Because this is a Windows virtual machine, click

connect, download a RDP file that you can then open,

and we’re now going to remote desktop into this

virtual machine running in Azure. See Figure 3-28.

Figure 3-28.  Virtual Machine Overview. Click Connect to download
an RDP file.

Chapter 3 Introduction to Azure: A Developer’s Perspective

115

	 10.	 When prompted for credentials, click More choices,

to enter the demouser credentials we set up. See

Figures 3-29 and 3-30.

Figure 3-29.  Click More choices and use a different account when
prompted for credentials

Chapter 3 Introduction to Azure: A Developer’s Perspective

116

	 11.	 We now have a new machine! When the Server

Manager comes up, select Local Server and the

IE Enhanced Security Configuration link. See

Figure 3-31.

Figure 3-30.  Enter “demouser” and “Demo@pass123” for the
password

Figure 3-31.  In Server Manager, click Local Server and IE Enhanced
Security Configuration

	 12.	 Set the Internet Explorer Enhanced Security

Configuration to off (Figure 3-32), or you will be

nagged every time you navigate to a site not already

on the list. Of course, this all depends on your

security needs.

Chapter 3 Introduction to Azure: A Developer’s Perspective

117

Creating virtual machines in the Azure portal is very easy, and in just

a few minutes, we were able to create resources in the cloud, including an

install of Visual Studio!

One note about Xamarin and Azure VMs: At the moment, it is very

difficult to use this combination. First, on a Windows Server VM, you

cannot create a UWP app on that platform in Visual Studio. You can create

a Windows 10 VM but requires an MSDN subscription to do this, as you

cannot create a Windows 10 VM with the free 30-day trial subscription.

Even if you have an Azure Windows 10 VM with which you can create UWP

apps, the emulators do not run in the VM, and there goes Android and iOS

dev. You could look into Genymotion for the Android emulator, however,

and that may work. iOS must connect on your network to a Mac, and the

VM is not on your network; it is on Azure’s. So, at this point, I recommend

using VS on the metal for Xamarin development and not in an Azure VM.

Figure 3-32.  Set the enhanced security configuration to off

Chapter 3 Introduction to Azure: A Developer’s Perspective

118

When we created our virtual machine, I mentioned something called

resource groups. I want to give you more context about that in the next

section.

�Deployment Models and Resource Groups
If you click the More services button again and go through the types of

resources you can manage in the portal, you’ll see that there are two kinds

of virtual machines. One says “Virtual Machines,” and the other says

“Classic.” Here is why:

Azure has two deployment models. The classic deployment model is

the original model from the first days of Azure. This model is centered on

the individual service, and every API call is made to make a single operation

on a single resource, for example, create a web site, stop a web site.

This model works well. But, as cloud solutions are becoming more

complex and composed of multiple services, it is becoming difficult to

deploy a solution by configuring each service independently.

The more recent deployment model, which is now the standard

model in the Azure portal, is called ARM, which stands for Azure Resource

Management. This model looks at the world through resource groups that

let you group multiple resources and create or manage them together. As

an example, if I look at my virtual machines, I can click on one of them and

see whether my VM belongs to a resource group. Drilling into that resource

group shows me that it includes a bunch of resources: the virtual machine,

the network interface, the public IP address, and storage. All those items

were created as a single operation when I created the virtual machine.

And, if I ever want to remove my virtual machine, I can simply remove this

resource group, and all my related resources will be deleted as well.

I can also see the cost of each of the resources in this group, but, more

important, I can get the code or template that can be used to re-create this

resource group. Resource groups can be represented using a template,

Chapter 3 Introduction to Azure: A Developer’s Perspective

119

which is a JSON file that defines all the resources and their relationships.

Then I can use this template to deploy this entire resource group together,

instead of creating each resource individually. I can also get the code

required to deploy this template via different programming languages, or

through the Azure scripting tools.

This gives you an idea of why you’re seeing two types of virtual

machines and other services in the full services list, and why we are always

associating resources to resource groups. See Figure 3-33.

Figure 3-33.  Select Resource groups and drill in your resource group
to see all of the components associated with it

So, we’ve created a virtual machine and connected to it through the

portal. Now, we will create and deploy a web application, but instead of

doing it from the portal, we will do this from the Visual Studio IDE on your

machine.

�Web App ASP.NET
Azure App Service Web Apps (or just Web Apps) provides a highly scalable,

self-patching web hosting service for hosting web applications, REST APIs,

and mobile back ends. You can develop in your favorite language, be it

.NET, Node.js, .NET Core, Ruby, Java, Python, or PHP. Applications run

Chapter 3 Introduction to Azure: A Developer’s Perspective

120

and scale with ease. Azure has SDKs in many languages and extensions

to popular IDEs, such as Visual Studio and Eclipse. Why Web Apps? We

can use a web app to provide access to an SQL database in the cloud, for

example. We will create a web application and deploy it to Azure from

Visual Studio.

	 1.	 Bring up Visual Studio 2017 on your machine (not in

the VM we just created).

	 2.	 Create an ASP.NET MVC app. Go to File ➤

New Project ➤ Visual C# ➤ Web ➤ ASP.NET Web

Application. See Figure 3-34.

Figure 3-34.  Creating a new Web project in Visual Studio on your
machine

Chapter 3 Introduction to Azure: A Developer’s Perspective

121

	 3.	 Select MVC and click OK. See Figure 3-35.

Figure 3-35.  Select MVC

Figure 3-36.  Build the project

	 4.	 Left-click project and select Build. See Figure 3-36.

Chapter 3 Introduction to Azure: A Developer’s Perspective

122

	 5.	 In the upper-right corner of the Visual Studio IDE,

you may have to sign in to your Azure account, in

order to publish to the Azure account associated

with it. See Figure 3-37.

Figure 3-37.  Select Account settings and log in to the same account
as with Azure

Figure 3-38.  Select Publish

	 6.	 Right-click the web app in Solution Explorer click

Publish, and choose Azure App Service, which is

the service that hosts web applications, mobile back

ends, and web APIs in Azure. See Figure 3-38.

Chapter 3 Introduction to Azure: A Developer’s Perspective

123

	 7.	 Here, we can choose one of our existing apps or

create a new one. We will create a new web app, give

it a name, and create a resource group (which is the

container of multiple apps used by my application.

Everything we create for this app will be associated

with this new group). Finally, click Create. See

Figures 3-39 and 3-40.

Figure 3-39.  Select Azure App Service, Create New, and Publish

Chapter 3 Introduction to Azure: A Developer’s Perspective

124

Visual Studio is now working with the Azure resource management

APIs to create a new web app and will then automatically deploy our web

app. See Figures 3-41 and 3-42.

Figure 3-40.  Provide App Name, select Subscription, create new
Resource Group (MyWebsiteRG), and keep the App Service Plan
default

Chapter 3 Introduction to Azure: A Developer’s Perspective

125

Let’s switch over to the Azure portal and see what was created. In the

portal, click App services. Another thing we can see here is that the web

site is associated with an App Service plan, which is basically the pricing

tier, or the features we are paying for. We can see that we are now using

Figure 3-41.  Azure is successfully configured

Figure 3-42.  Azure web site is running

Chapter 3 Introduction to Azure: A Developer’s Perspective

126

the Standard tier, but if we scroll down and click Scale up, we can see the

full range of pricing tiers. For example, if we don’t require strong compute

power but need to associate a custom domain to our web site, we would

choose the Standard S1 tier. We could also go with higher tiers, and then

our resources are dedicated to us and can be shared among several web

sites. We can add backup, SSL, and can load balance across regions and

more. For now, let’s stay with the free tier. See Figures 3-43 and 3-44.

Figure 3-43.  See associated service plan and click Scale up to see
options

Chapter 3 Introduction to Azure: A Developer’s Perspective

127

Figure 3-44.  Service plan tiers

Chapter 3 Introduction to Azure: A Developer’s Perspective

128

Visual Studio has added a deployment profile file to my project, with

information about the app service I am deploying my web app to, so

the next time, I’d like to push those changes to Azure. All I must do is hit

Publish again. Visual Studio has all the information it requires to deploy

it. Click Connected Services under Solution Explorer and click the Publish

tab, as shown in Figure 3-45.

Figure 3-45.  Connected Services are retained

So, we saw how to create a virtual machine through the portal, and

how to create and deploy a web site using Visual Studio. Now, I’d like to

show you how you can script it.

�Azure CLI
The Azure command-line interface (CLI) has two scripting options.

If you’re a Windows user and are familiar with PowerShell, Azure has

PowerShell cmdlets that let you leverage the rich capabilities that

PowerShell provides. If you feel more comfortable in the command line,

or are using a Mac or Linux, you can use the cross platform command-line

tools to do the same things. Behind the scenes, both Azure PowerShell and

Chapter 3 Introduction to Azure: A Developer’s Perspective

129

the Azure command-line interface interact with the same set of APIs, so

the capabilities are very similar. It is a matter of personal choice.

Before I discuss the CLI tools, I am going to show you how to install

them on your own machine.

	 1.	 Go to azure.microsoft.com and, at the bottom of

the page, click Downloads. Scroll down to see the

CLI tools. See Figures 3-46 and 3-47.

Figure 3-46.  Select Downloads at the bottom of the azure.
microsoft.com page

Figure 3-47.  Select PowerShell and command-line installs

Chapter 3 Introduction to Azure: A Developer’s Perspective

130

	 2.	 Open PowerShell and note a few things we can do

with the Azure PowerShell tools, as follows:

PowerShell

Login-AzureRmAccount

Get-AzureRmSubscription

Select-AzureRMSubscription -SubscriptionName "subname"

New-AzureRmResourceGroup -Name rgfromps -Location "West US"

New-AzureRmAppServicePlan -Name appplanfromps -Location

"West US" -ResourceGroupName rgfromps

New-AzureRmWebApp -Name awesomewebappfromps -Location

"East US" -ResourceGroupName rgfromps -AppServicePlan

appplanfromps

	 3.	 Within a few seconds, we were able to create a new

web app running on Azure. See Figures 3-48 and 3-49.

Figure 3-48.  PowerShell commands

Chapter 3 Introduction to Azure: A Developer’s Perspective

131

Figure 3-49.  PowerShell commands

	 4.	 Now switch back to the portal and search for that web

app. In Figure 3-50, you can see that it is associated

with the plan and resource group we just created.

Figure 3-50.  Web app and service plan created with PowerShell

Chapter 3 Introduction to Azure: A Developer’s Perspective

132

	 5.	 Deploy a web app from GitHub, not from Visual

Studio. To do that, you will need a repository on

GitHub that has a web application that you can

deploy. Luckily, Azure has a code samples gallery

that is all based on GitHub. Go to azure.microsoft.

com, and from the Resources menu, select Samples,

to get to the samples gallery. Here, search for HTML

and find the HTML sample for Azure App Service

sample. See Figures 3-51 and 3-52.

Figure 3-51.  Go to the Resources menu and select Code samples

Chapter 3 Introduction to Azure: A Developer’s Perspective

https://azure.microsoft.com/en-us/resources/samples/app-service-web-html-get-started/

133

Figure 3-52.  Select HTML sample for Azure App Service

Chapter 3 Introduction to Azure: A Developer’s Perspective

134

	 7.	 Now, go back to the portal and, on the MVC demo

web app, select Deployment options, then External

Repository, and paste that URL. When you click

Deployment options again, you will see that the

portal has already deployed that app to your web

site. See Figures 3-54, 3-55, and 3-56.

Figure 3-53.  Copy the clone URL

	 6.	 Browse GitHub and grab the clone URL, as shown in

Figure 3-53.

Chapter 3 Introduction to Azure: A Developer’s Perspective

135

Figure 3-54.  Deployment options for the MVC web site. Select
External Repository and paste in the clone URL

Figure 3-55.  The portal has deployed the app to the site

Chapter 3 Introduction to Azure: A Developer’s Perspective

136

There are a few more things you can do with

your web apps through the portal. You can set up

backups, scale them up, scale them out, configure

a custom domain name, set up SSL, set SSL up for

security scanning, and even visit a live console and

explore your application in production—all within

that rich Azure portal.

On the web site blade, and, if you are a DevOps person and

want to keep an eye on the site’s metrics, you can consult the

chart in Figure 3-57.

Figure 3-56.  Deployment details

Chapter 3 Introduction to Azure: A Developer’s Perspective

137

Figure 3-57.  Click any chart and add metrics, by clicking items on
the left. Here CPU Time has been added.

	 8.	 Click and add more metrics that you are interested

in, such as the number of 200 requests, 404s, and

more. You can even take this chart and pin it to your

main dashboard and make it your personal DevOps

dashboard, with all the information you require on

your running services. In fact, you can click Edit

dashboard and customize this dashboard the way

you want.

So, we’ve created a VM and some web apps. Now we need a database.

�SQL Database
There are two ways you can run SQL databases on Azure. You can install

SQL Server on a VM and get full control over the configuration of the

database. In fact, SQL Server running on a VM is one of the most popular

things people do on Azure.

Chapter 3 Introduction to Azure: A Developer’s Perspective

138

Another way is to use the Azure SQL Database service, which lets

you create your database in seconds, without having to take care of any

infrastructure or manage software updates.

�Creating Your Database
To create an SQL database in Azure, we can take the same approaches

we’ve seen before. We can create it from the portal or enlist the Azure CLI

or PowerShell to do it. We will use the portal.

	 1.	 Click New, and from the database category, choose

SQL Database. See Figure 3-58.

Figure 3-58.  Click +New ➤ Databases and select SQL Database

Chapter 3 Introduction to Azure: A Developer’s Perspective

139

	 2.	 Give it a name (SQL2018) and create a new resource

group. We can create our database as a new empty

database, seed it with sample data, or create it

from a backup that may have been created earlier.

Here we are selecting the source as a Sample

AdventureWorks database. This could also be the

easiest way to move your databases to the cloud.

Just upload a backup and create a database from

it. We can create a new database server (that can

hold multiple database instances) and choose a

location with credentials. See Figure 3-59. For the

credentials, use the following:

demoadmin, Demo@pass123

Figure 3-59.  Enter database name, select subscription, select sample
date, create a new resource group called SQL2018RG, configure server
with name sql2018srv, and provide credentials

Chapter 3 Introduction to Azure: A Developer’s Perspective

140

	 3.	 Choose a pricing tier. As you can see, you can

play around with SQL databases for as little as $5

per month, at the lowest performance tier. SQL

databases use DTUs—data transaction units—as a

performance measurement. So, as you check out

the different pricing tiers, this is the number you

should pay the most attention to. As your solution

grows, you can scale your database and change your

pricing tier at any point, without any downtime. See

Figure 3-60.

Figure 3-60.  Under Pricing Tier, slide DTU all the way to the left, and
you will see the current cost. Here it is $15.00 per month for 250GB of
storage. Click Create and Apply.

Chapter 3 Introduction to Azure: A Developer’s Perspective

141

	 4.	 Provisioning a database can take a few minutes,

and you can check the notification area in the

portal to get the latest update. Once the database

is provisioned, you can start monitoring it. You

can set up geo-replication, scale it up to a different

tier, based on your performance needs, configure

security, and more.

	 5.	 Open SQL2018 after it deploys. To access it on the

server we just created for the database, add white

list IP addresses by clicking Set server firewall

rules. Add client IP and save. This will allow access

to your IP or IP addresses range. Click save. Now

you can connect through a client library or SDK or

a management tool. Azure SQL Database allows

you to connect to it from a variety of programing

languages, such as .NET, Java, PHP, Python, and

more. See Figures 3-61 and 3-62.

Figure 3-61.  Select Set server firewall

Chapter 3 Introduction to Azure: A Developer’s Perspective

142

Figure 3-62.  Click Add client IP, then Save

Let’s connect to this database, to see the sample data that was

populated into the database, and run queries against it.

�Using Visual Studio to Verify Your Database
After you have created a database, the next thing you will want to do is

see the sample data that you seeded it with. In the following steps, we will

bring up Server Explorer and connect to the Azure database and then view

the data using the SQL Server Object Explorer.

Chapter 3 Introduction to Azure: A Developer’s Perspective

143

	 1.	 Open Visual Studio, navigate to Server Explorer,

and connect to Microsoft Azure Subscription. See

Figure 3-63.

Figure 3-63.  From Server Explorer, right-click Azure and select
Connect to Microsoft Azure Subscription

Figure 3-64.  From Server Explorer, expand SQL Databases, Right
click on SQL2018 and select Open in SQL Server Object Explorer

	 2.	 Expand the database and right-click and select Open

in SQL Server Object Explorer. See Figure 3-64.

Chapter 3 Introduction to Azure: A Developer’s Perspective

144

	 3.	 Query the existing table by right-clicking the

database table and selecting View Data. See

Figures 3-65 and 3-66.

Figure 3-65.  Right-click a table and select View Data

Chapter 3 Introduction to Azure: A Developer’s Perspective

145

�Building Solutions
Awesome! So, we’ve created a virtual machine, deployed web apps, and

created an SQL database in Azure. This should allow us to start building

solutions today, using your free trial accounts.

�Documentation
To learn more about the different Azure services, there is a huge

documentation section available from azure.microsoft.com.

	 1.	 If you click on the Documentation link at the top

menu bar, you can browse through all the services

and dive into their documentation. You can also

get high-level white papers for developers and IT

operators that provide a good technical overview

of the platform and services and when to choose

which service, based on the scenario you’re

building. See Figure 3-67.

Figure 3-66.  Rows for the table are retrieved and displayed

Chapter 3 Introduction to Azure: A Developer’s Perspective

146

�Solutions
In many cases, your solutions are going to be composed of multiple

services. For example, if you’re building a digital marketing web site, you

might start with a web site and scale it to different parts of the world, using

Traffic Manager, move your content to a CDN, and service media with

Media Services. If you visit the Solutions area on Microsoft Azure, you’ll

find the information you need to do that.

Figure 3-67.  Select documentation from Microsoft Azure

Chapter 3 Introduction to Azure: A Developer’s Perspective

147

Figure 3-68.  Azure solutions at https://azure.microsoft.com/
en-us/solutions/

	 1.	 Navigate to https://azure.microsoft.com/en-us/

solutions/. Here are some of the types of solutions

customers are building on Azure today. Click Digital

Marketing, for example, and you can see some key benefits,

learn about the core Azure services that can help you, and, if

you scroll down to the bottom, you’ll see some architectures

for common scenarios. See Figures 3-68 and 3-69.

Chapter 3 Introduction to Azure: A Developer’s Perspective

https://azure.microsoft.com/en-us/solutions/
https://azure.microsoft.com/en-us/solutions/
https://azure.microsoft.com/en-us/solutions/
https://azure.microsoft.com/en-us/solutions/

148

	 2.	 For example, if I am interested in building a web site

using the Umbraco content management system,

I can get an architecture diagram that shows me

all the services I need to use and how they should

be composed together. I can also see related

documentation to help me get started.

�Status
If you’re starting to think about production services on Azure, another

useful page is the Status page, easily found on the footer under Support,

that shows you the health of the platform and if there’s any known issues

for services or regions.

Figure 3-69.  One of the solution diagrams for digital marketing

Chapter 3 Introduction to Azure: A Developer’s Perspective

149

	 1.	 Navigate to https://azure.microsoft.com/en-us/

status/. We all know that every software has bugs,

and hardware might fail, so if you’re seeing something

weird, I suggest going to this page and detecting if

there is anything going on. See Figure 3-70.

Figure 3-70.  Check status at https://azure.microsoft.com/
en-us/status/.

�Support
What about support? As you’re going through the phases of testing out the

technology all the way to running production workloads in the cloud, you

might want to consider getting some level of support. It is nice to know that

there are options, depending on your needs and budget. Let’s compare some.

Chapter 3 Introduction to Azure: A Developer’s Perspective

https://azure.microsoft.com/en-us/status/
https://azure.microsoft.com/en-us/status/
https://azure.microsoft.com/en-us/status/
https://azure.microsoft.com/en-us/status/

150

	 1.	 On Microsoft Azure, click Support and then

Compare Support Plans. The free support you’re

getting as part of the free trial account covers billing

and subscription-related issues. The developer

support plan is great if you’re playing around with

the technology and require technical assistance. The

standard and professional support plans are best

suited for production workloads. They have faster

response times and better product coverage. See

Figures 3-71 and 3-72.

Figure 3-71.  On Microsoft Azure, click Support and then Compare
Support Plans

Chapter 3 Introduction to Azure: A Developer’s Perspective

151

	 2.	 To open a support request, you simply go to the

Azure portal and start the process. See Figures 3-73

and 3-74.

Figure 3-72.  View your support options

Chapter 3 Introduction to Azure: A Developer’s Perspective

152

Figure 3-73.  Click the smiley face and then Support

Figure 3-74.  Fill out a new support request

Chapter 3 Introduction to Azure: A Developer’s Perspective

153

�Delete Resources
When learning Azure, it is a good idea to delete resources you created in

the learning process. By doing so, you will extend the Azure credits. You

have used a couple of dollars’ worth in this chapter, if you completed it in

a few hours. These resources will not be required for the remainder of the

book.

	 1.	 Delete the resources created in this chapter, by

clicking Resource groups, then pressing the delete

button for each of them. The resources should be

related to demorg, MyWebsiteRG, rgfromps, and,

the latest, SQL2018RG. See Figures 3-75 and 3-76.

Figure 3-75.  Delete resources related to demorg, MyWebsiteRG, and
rgfromps

Chapter 3 Introduction to Azure: A Developer’s Perspective

154

�Summary
In this chapter, you took the first steps in working with Azure. I discussed

free trial accounts and what you can do with them to explore the platform.

We used the Azure portal to create and manage resources. We created

virtual machines, web apps, and an SQL database and discussed basic

concepts, such as resource groups, DTUs, and more. Then we deployed

a web app from Visual Studio and saw the tools and the integration we

have for Azure inside the IDE. We used scripting tools, such as the Azure

CLI and Azure PowerShell, to automate tasks, such as creating a new web

app, so we could deploy into it from GitHub. I also discussed growing

your solutions and how to find useful resources on azure.microsoft.com

related to support, architectures, and more and how to delete learning

resources.

Figure 3-76.  Delete resources related to SQL2018RG

Chapter 3 Introduction to Azure: A Developer’s Perspective

155© Russell Fustino 2018
R. Fustino, Azure and Xamarin Forms, https://doi.org/10.1007/978-1-4842-3561-4_4

CHAPTER 4

Building an Azure
Service Using
Quickstart
In building a typical app, you need data. Then, you usually have to

serve that data up in a web service, so it can be consumed by any client

application. Finally, in the client app itself, you must download that data,

possibly update it, and send it back. What I have just described are the

basic steps in the Quickstart Azure Mobile App.

This chapter is divided into six parts, each of which represents a main

task in creating an Azure service, beginning with Quickstart. You will use

the Azure portal to create a mobile app, using Xamarin Forms Quickstart,

and Quickstart will create a database for the app. Quickstart also allows

you to create an app service, using the Table API. Finally, Quickstart

generates a sample Xamarin Forms application to consume the data.

Quickstart creates one table, which represents a “to do item” list. The

Xamarin Forms app created will display and update the “to do item” table.

This is great! However, realistically, the next thing you will have to do is

add your own tables to your own application. I will cover how to do this in

this chapter as well. You will then modify the Table API service app and, in

Chapter 5, create two additional tables for a different app to consume. This

first table is for questions, with a list of possible answers for each question,

156

and is called Questions. This is analogous to a multiple-choice question on

an exam. The user will respond to those questions by selecting an answer,

and that response will be stored in the second table, called Responses. The

data that gets generated for the Questions table will be accomplished in

this chapter. The data that gets generated for the Responses table will be

generated in Chapter 5. In other words, this chapter will focus primarily on

the app service, and the next chapter will focus primarily on the client.

The result will be to consume the Questions table in a client app that

serves as a polling service to the user community. The Xamarin client

app will display the question and ask the user to select a desired answer

from a list and then store the response. It is kind of like a voting system

in which each user of the app will be responding to a question. For

example, to a question such as “What is your favorite book in the list?”,

the user would select from the list the book he or she likes best. This will

be referred to as a polling app. As part of this process, you will have to

seed the data for the questions and a list of possible answers to select

from. Finally, we will verify that seeded data generated in this chapter is

stored in the “to do item” table from Quickstart as well as the customized

Questions table.

Note  Run the code in this chapter from your laptop/PC and not an
Azure virtual machine.

Time Estimate
60 Minutes

Chapter 4 Building an Azure Service Using Quickstart

157

�Part 1: Create a Mobile App in the Azure
Portal
Time Estimate
10 Minutes

Let’s get started. In this part, we will begin the process of creating a

mobile app in the Azure portal. We must do this first, because Quickstart

becomes available on one of the blades, once the mobile app is deployed.

We will then cover the first step in Quickstart for mobile app Xamarin

Forms, which is used to create the database. We will then perform a

second step in Quickstart, which is to download the code required for the

API service.

	 1.	 From http://portal.azure.com, click New, then

Web + Mobile. Next, select Mobile App. See Figure 4-1.

Figure 4-1.  From the Azure portal, click New, Web + Mobile, and
select Mobile App

Chapter 4 Building an Azure Service Using Quickstart

http://portal.azure.com/

158

	 2.	 Create a new mobile app with a unique app name

like BookPollApp and a new resource group called

BookPollAppRG. Select or create an app service plan

in a location close to you. (use this same location for

all future resources). Click OK and then Create new,

as shown in Figure 4-2. It will take about a minute to

create the new mobile app.

Figure 4-2.  Create a new mobile app with a unique app
name similar to BookPollApp and a new resource group called
BookPollAppRG

	 3.	 Once notified, the app is created, and if it does not

open automatically, open the service manually.

On the App Service blade, select Quickstart and

Xamarin.Forms, as shown in Figure 4-3.

Chapter 4 Building an Azure Service Using Quickstart

159

	 4.	 You will see that there are three steps:

	 a.	 Connect a Database

	 b.	 Create a Table API

	 c.	 Configure Your Client Application (Xamarin

Forms)

Execute one step at a time and wait for the

deployments for each step to finish before proceeding

to the next step. The app we are writing will be a

polling service with questions provided in the app

service (step 2) and selected answers provided in the

app client (covered in Chapter 5). We will look at the

Quickstart app generated for the client application,

which displays a “to do list” in Step 3.

Figure 4-3.  Select Quickstart and Xamarin.Forms

Chapter 4 Building an Azure Service Using Quickstart

160

	 5.	 Click the information box to connect a database, as

the first step in the Quickstart wizard. See Figure 4-4.

Figure 4-4.  Select Connect a database

Chapter 4 Building an Azure Service Using Quickstart

161

	 6.	 Click +Add to add a connection. See Figure 4-5.

Figure 4-5.  Add a data connection

	 7.	 Click SQL Database Configure required settings ➤

+ Create a new database, give it a unique name like

BookPollAppDB, and click Target server Configure

required settings. Give the server a unique name,

such as bookpollappsrv, and type “demouser” as

the server admin login, “Demo@pass123” (case

sensitive) as the password, and then the desired

location, as in Figure 4-6. Accept the default pricing

tier of Standard s0: 10 DTU, 250GB, then click Select.

Figure 4-6.  Create a new database and new server with the
properties illustrated here

Chapter 4 Building an Azure Service Using Quickstart

162

	 8.	 Click MS_TableConnectionString, as in Figure 4-7,

and accept the default name. Click OK to start the

database deployment.

Figure 4-7.  Accept the default connection string name

	 9.	 The deployment will take three or four minutes.

Once created, proceed to step 2 of Quickstart from

the portal, but only after the data connection is

created. (It is important that you wait, or it may not

work.) Once you see the green check mark in step 1,

proceed to step 2. Time for a coffee. See Figure 4-8.

Figure 4-8.  Wait until you see the green check mark in step 1 before
proceeding to step 2

	 10.	 Now that you have successfully created a database,

click C# from the drop-down menu and then click

Download. Download to a folder close to your root

drive, such as C:\apressbook. See Figure 4-9.

Chapter 4 Building an Azure Service Using Quickstart

163

Figure 4-9.  Select C# from the drop-down menu and then click
Download

Do not close the portal window with Quickstart

showing. We will return to it in about 20 minutes, to

complete step 3. If you try to perform step 3 now, it

will fail for the rest of this chapter. Be patient; trust

me here.

Chapter 4 Building an Azure Service Using Quickstart

164

�Part 2: Modify the Service App
Time Estimate
5 Minutes

We have accomplished quite a bit already with steps 1 and 2 of

Quickstart completed. We created a database and generated the code

required to serve it up in an API service. In theory, all we have to do

is compile and publish the app service and then perform step 3 to

download the Xamarin Forms app. HOWEVER, WE ARE NOT GOING TO

DO THIS YET. The reason? I want to show you how to work with your own

Xamarin Forms application, not just the app generated from Quickstart.

In other words, Quickstart is great for creating a new application (we

are going to do that in due time in this chapter), but we are going to kill

two birds with one stone and also cover how to modify the API service

to provide data for an existing app, by generating a couple of new tables

before we publish this service. Those two additional tables will be used

in the app in Chapter 5. In this part, you will modify the Table API Service

app generated with Quickstart, to add those two new tables.

Caution D o not publish this until all the modifications have been
made and you are directed to do so toward the end of this chapter.

Note T he completed solution is provided at https://github.com/
Apress/azure-and-xamarin-forms however the Chapter 4
solution is for reference only. The Quickstart created solution places
the correct end point in the code as well as the configuration settings.
So, the provided solution will not run and publish successfully, as is.

	 1.	 Once downloaded, in File Explorer, right-click the

zip, select properties, check unblock, and click

OK. Extract the files. See Figure 4-10.

Chapter 4 Building an Azure Service Using Quickstart

https://github.com/Apress/azure-and-xamarin-forms
https://github.com/Apress/azure-and-xamarin-forms

165

	 2.	 Open the solution in Visual Studio, right-click the

solution, select Restore NuGet Packages, and then

rebuild the solution. See Figure 4-11.

Figure 4-10.  Check Unblock and click OK

Chapter 4 Building an Azure Service Using Quickstart

166

	 3.	 Open the BookPollAppService solution.

	 4.	 Right-click the solution and select Manage NuGet

Packages, then browse to add the package for

System.ComponentModel.Annotations. See

Figure 4-12.

Figure 4-11.  Right-click the solution and select Restore NuGet Packages

Figure 4-12.  Browse for System.ComponentModel.Annotations and
install

Chapter 4 Building an Azure Service Using Quickstart

167

The plumbing is done, with the code and NuGet packages installed.

Now, let’s get down to adding two new tables to the Service API in the

next part.

�Part 3: Add the Question and Response
DTOs and End Points
Time Estimate
5 Minutes

In this part, we will prepare the app to seed the Questions table with

data the first time we access it. This will require that you create a class to

represent this, both in our database and over the wire, when talking to a

client. You will add a class named PollQuestion to provide this support.

You will also need to add a new TableController, to expose this table over

the network. You want to store this object in a table named "questions".

The JSON format will match the data transformation object (DTO) . The

JSON parser will automatically lowercase the property names.

	 1.	 Add a class to the DataObjects folder called

PollQuestion. See Figure 4-13.

Chapter 4 Building an Azure Service Using Quickstart

168

	 2.	 Add the following using statements:

using Microsoft.Azure.Mobile.Server;

using System.ComponentModel.DataAnnotations.Schema;

	 3.	 Derive the class from EntityData and add code for

Text and Answers. The highlighted text represents

code changes.

namespace BookPollAppService.DataObjects

{

 [Table("questions")]

 public class PollQuestion : EntityData

 {

 public string Text { get; set; }

Figure 4-13.  Add a class and name it PollQuestion.cs in the
DataObjects folder

Chapter 4 Building an Azure Service Using Quickstart

169

 public string Answers { get; set; }

 }

}

	 4.	 Add a class to the DataObjects folder called

PollResponse.

	 5.	 Add the using statements:

using System.ComponentModel.DataAnnotations.Schema;

using Microsoft.Azure.Mobile.Server;

using Newtonsoft.Json;

	 6.	 Add a class to the DataObjects folder called

PollResponse. Add the following code:

namespace BookPollAppService.DataObjects

{

 [Table("responses")]

 public class PollResponse : EntityData

 {

 [JsonProperty("questionId")]

 public string QuestionId { get; set; }

 public string Name { get; set; }

 [JsonProperty("answer")]

 public int AnswerIndex { get; set; }

 }

}

	 7.	 Save all.

We have now completed the DTOs thatdefine our new tables. Let’s now

expose the data, through functions on retrieving and updating the tables,

by creating the controllers.

Chapter 4 Building an Azure Service Using Quickstart

170

�Part 4: Add Controllers
Time Estimate
20 Minutes

In this part, you will wire up controllers to expose a table over the

wire. The question table controller should expose only the GET options

(all or by ID). We will not allow this table to be updated in the client

Xamarin Forms app.

Using a database initializer function, we will seed this table with data,

by creating a set of poll questions and inserting them into it.

	 1.	 Try { Right-click the Controllers folder and select

Add ➤ Controller, then select Azure Mobile Apps

Table Controller. See Figures 4-14 and 4-15.

Figure 4-14.  Right-click the Controllers folder and select Add
Controller

Figure 4-15.  Select Azure Mobile Apps Table Controller

Chapter 4 Building an Azure Service Using Quickstart

171

	 2.	 Try: { Select PollQuestion from the Model class

drop-down menu and BookPollAppService for the

Data context class. Rename the default controller

to QuestionsController. You will also have to add

a controller for PollResponse, using a controller.

Revise the default name to ResponsesController.

	 3.	 Try: { Select PollQuestion from the Model class

drop-down menu, BookPollAppContext from

the Data context class drop-down, and rename

PollQuestionController QuetionsController (See

possible error in step 5 below). See Figure 4-16.

Figure 4-16.  Controller renamed QuestionsController

	 4.	 Try: { PollResponse from the Model class drop-down,

insert BookPollAppContext as the Data context

class, and change the name of the Controller from

PollResponseController to ResonsesController

(See possible error in step 5 below). See Figure 4-17.

Chapter 4 Building an Azure Service Using Quickstart

172

	 5.	 Catch: { If you get either of the following errors

related to scaffolding, resulting from a known bug in

VS 2017 at the time of writing, see the workarounds

that follow. (See Figures 4-18 and 4-19.) If the bug

is fixed by the time you read this, simply follow

workaround #1 at step 6 and let Visual Studio add

the controllers instead of adding them manually.

You will still have to make the code modifications

documented in workaround #1, after adding your

Questions and Responses controllers.

Figure 4-17.  Controller renamed ResponsesController

Figure 4-18.  COM component error

Chapter 4 Building an Azure Service Using Quickstart

173

}

	 6.	 Catch {There are two workarounds.}

	 7.	 Workaround #1 is quicker, unless you already have

VS 2015 installed, as VS 2015 can take a couple

of hours to install. Workaround #1 is to add the

classes and code modifications manually in step

6. Workaround #2 starts at step 13 and is about

reverting to VS 2015 and installing the Azure SDK for

VS 2015, to create the table controllers. Once added

successfully, return to using VS 2017. If you use

workaround #2, you will still have to make the code

modifications in steps 7 through 12. Details on each

workaround follow.

	 8.	 Workaround #1

Add an existing file from the book assets folder

called QuestionsController.cs to the Controllers

folder in the project solution, only if you received

one of the preceding errors. See Figure 4-20.

Figure 4-19.  Scaffolding error

Chapter 4 Building an Azure Service Using Quickstart

174

	 9.	 You may have to change the namespace of your

project name, and you should remove or comment

any “non-GET” methods, as the question data will be

read-only. So, comment out or delete the tasks for

PATCH, POST, and DELETE questions.

	 10.	 The code final code should look like the following

(resolve the using statements):

using System.Linq;

using System.Threading.Tasks;

using System.Web.Http;

using System.Web.Http.Controllers;

using System.Web.Http.OData;

using Microsoft.Azure.Mobile.Server;

using BookPollAppService.DataObjects;

using BookPollAppService.Models;

namespace BookPollAppService.Controllers

{

 �public class QuestionsController :

TableController<PollQuestion>

 {

Figure 4-20.  Add QuestionsController.cs to the Controllers
folder

Chapter 4 Building an Azure Service Using Quickstart

175

 �protected override void Initialize(HttpController

Context controllerContext)

 {

 base.Initialize(controllerContext);

 �BookPollAppContext context = new

BookPollAppContext();

 �DomainManager = new EntityDomainManager<

PollQuestion>(context, Request);

 }

 // GET tables/PollQuestion

 �public IQueryable<PollQuestion>

GetAllPollQuestion()

 {

 return Query();

 }

 �// GET tables/PollQuestion/48D68C86-6EA6-4C25-

AA33-223FC9A27959

 �public SingleResult<PollQuestion>

GetPollQuestion(string id)

 {

 return Lookup(id);

 }

 }

}

	 11.	 Add an existing file for the student materials to the

Controllers folder, called ResponsesController.cs.

You may have to change the namespace to your

project name.

Chapter 4 Building an Azure Service Using Quickstart

176

	 12.	 We can customize it with ASP.NET attributes. For

example, we can rename the methods to match

what they do.

•	 Rename the PostPollResponse method to

InsertPollResponse. Because we no longer have

the word “Post” on the method, the controller

will not associate this to an HTTP POST request. To

correct this, add an [HttpPost] attribute to the

method.

•	 Rename the PatchPollResponse method to

UpdatePollResponse and add an [HttpPatch]

attribute to the method, to ensure that it responds

to an HTTP PATCH request.

using System.Linq;

using System.Threading.Tasks;

using System.Web.Http;

using System.Web.Http.Controllers;

using System.Web.Http.OData;

using Microsoft.Azure.Mobile.Server;

using BookPollAppService.DataObjects;

using BookPollAppService.Models;

namespace BookPollAppService.Controllers

{

 �public class ResponsesController :

TableController<PollResponse>

 {

 �protected override void Initialize(Http

ControllerContext controllerContext)

 {

Chapter 4 Building an Azure Service Using Quickstart

177

 base.Initialize(controllerContext);

 �BookPollAppContext context = new

BookPollAppContext();

 �DomainManager = new EntityDomainManager

<PollResponse>(context, Request);

 }

 // GET tables/PollResponse

 �public IQueryable<PollResponse>

GetAllPollResponse()

 {

 return Query();

 }

 �// GET tables/PollResponse/48D68C86-6EA6-

4C25-AA33-223FC9A27959

 �public SingleResult<PollResponse>

GetPollResponse(string id)

 {

 return Lookup(id);

 }

 �// PATCH tables/PollResponse/48D68C86-6EA6-

4C25-AA33-223FC9A27959

 [HttpPatch]

 �public Task<PollResponse>

UpdatePollResponse(string id,

Delta<PollResponse> patch)

 {

 return UpdateAsync(id, patch);

 }

Chapter 4 Building an Azure Service Using Quickstart

178

 // POST tables/PollResponse

 [HttpPost]

 �public async Task<IHttpActionResult>

InsertPollResponse(PollResponse item)

 {

 �PollResponse current = await

InsertAsync(item);

 �return CreatedAtRoute("Tables", new {

id = current.Id }, current);

 }

 �// DELETE tables/PollResponse/48D68C86-

6EA6-4C25-AA33-223FC9A27959

 public Task DeletePollResponse(string id)

 {

 return DeleteAsync(id);

 }

 }

}

	 13.	 Open BookPollAppContext.cs in the Models folder,

if you manually added the preceding controllers,

and add these two lines after the OnModelCreating

method. Also, replace the BookPollAppService

namespace and lines below with the name of your

project, if different, and do the same for any using

statements. These lines may be there already, if you

successfully added a controller through the Visual

Studio Add Controller.

Chapter 4 Building an Azure Service Using Quickstart

179

 �public System.Data.Entity.DbSet<BookPollAppService.

DataObjects.PollQuestion> PollQuestions { get; set; }

 �public System.Data.Entity.DbSet<BookPollAppService.

DataObjects.PollResponse> PollResponses { get; set; }

	 14.	 For BookPollAppContext.cs, the code should look

like that shown in Figure 4-21. This completes the

controller updates!

Figure 4-21.  The completed code for BookPollAppContext.cs

Chapter 4 Building an Azure Service Using Quickstart

180

	 15.	 Workaround # 2

Download and install VS 2015 at www.visualstudio.

com/vs/older-downloads/. You can add controllers

in VS 2015 and go back to a prior version on the Azure

SDK for 2.9.6 and Azure Mobile apps SDK version

2.0.40201. You may have to uninstall the Azure Mobile

Apps SDK first, if newer. This is a bug with the version

of the Azure Mobile Apps SDK installers included

with VS 2017. The templates themselves shouldn’t

have changed, so the specific workaround is to

download the Azure 2.9.6 SDK from www.microsoft.

com/en-us/download/details.aspx?id=54289 and

select the AzureMobileAppsSdkV2.0.msi installer

(version 2.0.40201). This will install the scaffolded

controllers to the folder indicated in the error

message. Also, you may have to install the Azure

SDK for VS 2015, which can be accessed at https://

azure.microsoft.com/en-us/downloads/, as shown

in Figures 4-22 and 4-23.

Repeat steps 1–11, to create the controllers,

with the only difference being that you will not

have to add the PollQuestionController and

PollResponseController classes in step 6 from

existing files, as these will have been generated.

Modify generated code as in steps 1–11.

Chapter 4 Building an Azure Service Using Quickstart

http://www.visualstudio.com/vs/older-downloads/
http://www.visualstudio.com/vs/older-downloads/
http://www.microsoft.com/en-us/download/details.aspx?id=54289
http://www.microsoft.com/en-us/download/details.aspx?id=54289
https://azure.microsoft.com/en-us/downloads/
https://azure.microsoft.com/en-us/downloads/

181

Figure 4-22.  Download the Azure SDK for VS 2015

Figure 4-23.  Install the Azure SDK for VS 2015

Chapter 4 Building an Azure Service Using Quickstart

182

We are almost at the finish line! The only thing left in building our API

service is to prepopulate our tables with some data. This is referred to as

“seeding the data.”

�Part 5: Seed the Data and Force Entity
Framework to Re-create Our Tables
and Publish
Time Estimate
10 Minutes

When you ship an application, it is often required that you ship it with

data that is prepopulated in the database that is used for the app. In our

case, Quickstart has to populate a few items in the “to do list” table. This

way, when you open the app, you will see some sample data. And in our

new tables that we added in the preceding parts, we must populate the

Questions table with some questions and some answers to select from, as

this is required to make the app work. In this part, you will seed data for

the database, and we will publish the app service.

	 1.	 For one-time initialization, open the Startup.

MobileApp.cs file in the App_Start folder in

Solution Explorer.

	 2.	 At about line 52, the BookPollAppInitializer :Cr

eateDatabaseIfNotExists<BookPollAppService>

database initializer class directs Entity Framework

to create the database tables required to run the

service, if no tables exist in the database. This

initializer only runs once. If we later add/change/

delete a DTO, the service will throw an exception

indicating that the schema is out of date and does

not match the model.

Chapter 4 Building an Azure Service Using Quickstart

183

Note T o re-create tables when a schema changes, you have to
change the database initializer class to DropCreateDatabaseIf
ModelChanges<BookPollAppService>, which instructs Entity
Framework to drop all the tables and re-create them if the model
(BookPollAppService) or any DTOs in the model change. Recall that
when we add a new Table Controller, a DbSet property is created in
the BookPollAppService to represent the table. The system identifies
this using reflection and recognizes that the database schema is
different. It will then re-create all the tables, using the current model;
however, we will lose all our data. DropCreateDatabaseAlways
will always drop the tables and create. Data must be migrated in
these scenarios.

	 3.	 Keep CreateDatabaseIfNotExists on first run,

then if you do subsequent runs, you can change

to either DropCreateDatabaseIfModelChanges or

DropCreateDatabaseAlways.

	 4.	 Replace the protected override void Seed method

code with the following, which seeds data for the

TodoItem list as well as PollQuestions (the source for

Startup.MobileApp.cs is in the Assets folder, if you

wish to copy the seed override method):

 �public class BookPollAppInitializer :

CreateDatabaseIfNotExists <BookPollAppContext>

 {

 �protected override void Seed(BookPollAppContext

context)

 {

Chapter 4 Building an Azure Service Using Quickstart

184

 �List<TodoItem> todoItems = new

List<TodoItem>

 {

 �new TodoItem { Id = Guid.NewGuid().

ToString(), Text = "First item",

Complete = false },

 �new TodoItem { Id = Guid.NewGuid().

ToString(), Text = "Second item",

Complete = false },

 };

 foreach (TodoItem todoItem in todoItems)

 {

 context.Set<TodoItem>().Add(todoItem);

 }

 �List<PollQuestion> Questions = new

List<PollQuestion>

 {

 �new PollQuestion { Id = Guid.NewGuid().

ToString(), Text = "What book would you

like to read?",

 �Answers = "Beginning Entity

Framework Core 2.0|Beginning

Windows Mixed Reality

Programming|Business in Real-Time,

Using Azure IoT|Cyber Security on

Azure|Angular 5 and .NET Core 2" },

 �new PollQuestion { Id = Guid.NewGuid().

ToString(), Text = "What is your

favorite book category?",

Chapter 4 Building an Azure Service Using Quickstart

185

 �Answers = "Apple and iPS|Programming|

Machine Learning|Mobile|Microsoft

and .NET" },

 };

 foreach (PollQuestion question in Questions)

 {

 �context.Set<PollQuestion>().

Add(question);

 }

 context.SaveChanges();

 base.Seed(context);

 }

 }

	 5.	 Your code should look like that shown in Figure 4-24.

Chapter 4 Building an Azure Service Using Quickstart

186

Figure 4-24.  The completed Startup.MobileApp.cs file in the
App_Start folder

Chapter 4 Building an Azure Service Using Quickstart

187

	 7.	 Select Azure App Service, then Select Existing. See

Figure 4-26.

	 6.	 Build the app. Drum roll please! Right-click the

solution, and now you can publish the app. See

Figure 4-25.

Figure 4-25.  Select the project, right-click, and select Publish… .

Chapter 4 Building an Azure Service Using Quickstart

188

	 8.	 Verify your credentials in the upper-right corner.

Select your subscription and, under Resource

Group, BookPollAppRG, then select your app

service, BookPollApp. See Figure 4-27.

Figure 4-26.  Select the Azure App Service, then Select Existing, and
click Publish… .

Chapter 4 Building an Azure Service Using Quickstart

189

Figure 4-27.  Select your subscription and resource group from the
drop-downs and select the app service you created in Quickstart
under Resource Group

	 9.	 The deployment should take a minute or two. Once

deployed, you should see your browser pop up, with

the service running as shown in Figure 4-28.

Chapter 4 Building an Azure Service Using Quickstart

190

	 10.	 Now go back to the portal quick start and complete

step 3, the final step, but only after you see that

the web service is running. Click to download the

Xamarin Forms client application for CREATE A

NEW APP. See Figure 4-29. We will be connecting to

an existing app in Chapter 5.

Figure 4-28.  Your web service should pop up in your browser,
indicating that the mobile app is up and running!

Chapter 4 Building an Azure Service Using Quickstart

191

Before you unzip, right-click the downloaded file

and bring up the properties to unblock. Check

Unblock and click OK. If you do not do this, you may

encounter strange errors when running your app in

Visual Studio. See Figure 4-30.

Figure 4-29.  Click the Download button to get your Xamarin Forms
app, which is wired to your service and data

Figure 4-30.  Right-click the downloaded zip and select properties.
Check Unblock and click OK.

Chapter 4 Building an Azure Service Using Quickstart

192

	 11.	 Right-click the solution and Restore NuGet

Packages.

	 12.	 In the BookPollApp, open Constants.cs and verify

that the application URL is set to what you created in

Quickstart. See Figure 4-31.

Figure 4-31.  Verify application URL in Constants.cs

	 13.	 Right-click the UWP project and set as startup. See

Figure 4-32.

Chapter 4 Building an Azure Service Using Quickstart

193

	 14.	 Rebuild the portable project and the UWP projects

and any other platforms you wish to test.

	 15.	 You need to run the app to populate the database
tables. For UWP, run the app on Local Machine ×86

or ×64 (not ARM). See Figure 4-33.

Figure 4-32.  Right-click the UWP project and select Set as StartUp
Project

Figure 4-33.  Select ×64 or ×86 and then click Local Machine

Chapter 4 Building an Azure Service Using Quickstart

194

	 16.	 After the app starts, give it 5–10 seconds the first

time, you should see a couple of “to do” items float

into the list that were populated in the service app

on our database. See Figure 4-34.

Figure 4-34.  See the “to-do list” items for the first and second items

	 17.	 Go ahead and add a third entry. It will be stored in

your Azure Database. See Figures 4-35 and 4-36.

Figure 4-35.  Add a third item to the list by typing a value and
clicking +

Chapter 4 Building an Azure Service Using Quickstart

195

Wow! That completes building your customized tables for an existing

app and the table for the new app from Quickstart. We now have a working

API that serves up data that our client apps can use. Are you feeling tingly

yet? But wait…is the data really in the database? We know it is for the

TodoItem table, because the preceding app shows it, but what about the

Questions table? We need to verify this.

�Part 6: Verify the Database
Time Estimate
10 Minutes

In this final part of the chapter, we will look at how to verify that the

data has been seeded successfully in our application database. This is

useful to do at this point, because in the next chapter, we must know if this

part has been done correctly, or we will have data problems that are not

in the app but in the database. So, we must eliminate that possibility. Let’s

accomplish this task and get started using SQL Server Management Studio.

Note  You must run the Xamarin Forms app in Part 5, to see the data
in Part 6. It does not seed tables in the database until used in the
Xamarin Forms client app. 

Figure 4-36.  You will see the third item added to the list

Chapter 4 Building an Azure Service Using Quickstart

196

	 1.	 Go back to the portal and click Resource group on

the left dashboard panel. Select BookPollAppRG,

then select the SQL database, BookPollAppdb.

	 2.	 Copy the Database URL. See Figure 4-37.

Figure 4-37.  Copy the server name URL for your database in the
portal

	 3.	 Start up SQL Server Management Studio, paste in

the URL for the server name, and enter the login

user and password that you set up for the database.

Click Connect. See Figure 4-38.

Chapter 4 Building an Azure Service Using Quickstart

197

	 4.	 If you get prompted, sign in and create a new

firewall rule. See Figures 4-39 and 4-40.

Figure 4-38.  Paste in the URL, enter the credentials you set up, and
click Connect

Figure 4-39.  Click Sign in and enter your credentials for the portal

Chapter 4 Building an Azure Service Using Quickstart

198

Figure 4-40.  Add my client IP and click OK

	 5.	 Expand BookPollAppDB and Tables, right-click

dbo.TodoItems, and click Select Top 1000 Rows.

See Figure 4-41.

Chapter 4 Building an Azure Service Using Quickstart

199

Figure 4-41.  Right-click dbo.TodoItems then click Select Top 1000
Rows

	 6.	 You should see all three rows, including the one we

added. See Figure 4-42.

Chapter 4 Building an Azure Service Using Quickstart

200

	 7.	 Do the same for dbo.questions: click Select Top

1000 Rows. See Figure 4-43.

Figure 4-42.  All three items are shown

Figure 4-43.  Select rows for the dbo.questions table

Chapter 4 Building an Azure Service Using Quickstart

201

	 8.	 You should see the two questions we added. See

Figure 4-44.

Figure 4-44.  Two questions should be displayed

Figure 4-45.  You can set the server firewall on the portal as well

	 9.	 The Responses table will be empty. We will be

populating that in Chapter 5.

	 10.	 You can also set up the firewall rules on the server.

Navigate to the portal and open the database blade.

Click Set server firewall. See Figure 4-45.

Chapter 4 Building an Azure Service Using Quickstart

202

	 11.	 You should see the firewall rule that we just set up

from SQL Server Management Studio. See Figure 4-46.

Figure 4-46.  The client IP we set up via SQL Server Management
Studio

	 12.	 Click on the + Add client IP to set up another one if

you like. Click Save. Congratulations! You just built a

service that can be consumed by any client. We will

populate the Responses table and use the Questions

table in the next chapter.

Chapter 4 Building an Azure Service Using Quickstart

203

	 13.	 Type in the URLS to display the data in any current

browser (except Internet Explorer, which will prompt

you to download the results, which you can view with

Notepad). Figure 4-47 shows the query for todoitem

from the Edge browser. If you receive a message that

resources have been moved or renamed, double-

check the controller step 2 in Part 4, and make sure

that you changed the name of the default controller

from PollQuestionController to QuestionsController

and did the same for responses.

Figure 4-48.  The results for a query in a browser. These are from
Firefox.

Figure 4-47.  The results for a query in a browser. This one is from Edge.

From Firefox, query the Questions table, and it

should appear nicely formatted, as in Figure 4-48.

Enter the following URL: https://bookpollapp.

azurewebsites.net/tables/questions?ZUMO-API-

VERSION=2.0.0.

Chapter 4 Building an Azure Service Using Quickstart

https://bookpollapp.azurewebsites.net/tables/questions?ZUMO-API-VERSION=2.0.0
https://bookpollapp.azurewebsites.net/tables/questions?ZUMO-API-VERSION=2.0.0
https://bookpollapp.azurewebsites.net/tables/questions?ZUMO-API-VERSION=2.0.0

204

	 14.	 Do not delete any resources from this chapter until

you have completed Chapter 5.

Caution D o not delete any resources from this chapter until you
have completed Chapter 5.

�Summary
In this chapter, you used the Azure portal to create a mobile app and

Xamarin Forms’ Quickstart to create a database for the app. Quickstart also

created an app service using the Table API. You modified the Table API

Service app and created two additional tables for questions and responses,

which will be used in another Xamarin Forms app in Chapter 5. You have

also seeded some data. You downloaded the sample Quickstart Xamarin

Forms solution and ran it. You updated the “to do item” list and verified

the database contents with SQL Server Management Studio and set up a

server firewall rule.

In the next chapter, let’s look at taking an existing Xamarin Forms app

and integrating Azure, so we can consume the Questions table data that we

exposed in our API app service. We will be populating the Responses table

data in Chapter 5 from that same existing app. For the rest of the book, it is

all about the client app!

Chapter 4 Building an Azure Service Using Quickstart

205© Russell Fustino 2018
R. Fustino, Azure and Xamarin Forms, https://doi.org/10.1007/978-1-4842-3561-4_5

CHAPTER 5

Building a Xamarin
Forms Azure Client
When we used Quickstart in Chapter 4, we generated a new app that

utilized Azure services. Now that you are liking Azure and, I hope, have

seen the light, you may have an existing app that you would like to modify

to use Azure. I have several apps that I have written for which I wish I

had started using Azure from the get-go. This chapter will help you make

modifications to an existing app and take advantage of the benefits that

Azure has to offer. Something else that is often an afterthought is to

make your app available and fully operational in an offline manner. The

app we will be modifying in this chapter is fully functional from a local

perspective, and we want to move the data for a local store to the cloud

as well as synchronize it when offline. These are all common tasks many

existing apps require today that cause headaches for developers.

In this chapter, you will modify an existing Xamarin Forms application

to add support for utilizing an Azure mobile service. You can use any mix

of the platform projects, depending on your development environment

(Mac or Windows). You will customize data transfer objects (DTOs)

and database query logic, as well as add offline caching support and

synchronization.

206

Note  Run this project from your laptop/PC and not an Azure
Virtual Machine. Chapter 4 must be completed, as it creates
a service that will be consumed in Chapter 5. It creates an end
point similar to http://bookpollapp.azurewebsites.net.
Completed code for Chapter 4 is in this book’s assets folder. The
source code and assets for this book can be downloaded from
https://github.com/Apress/azure-and-xamarin-forms.

The provided chapter 4 solution does not run and publish as is, It
needs the Quickstart generated endpioint and Qucikstart generated
configuration in Web.config as well as appropriate NuGet packages.

You must publish the app service in Chapter 4, exposing the end point
similar to above.

We will not be using the Xamarin Client App created using Quickstart
in Chapter 4. Instead, we will be using a starter project for Chapter 5.
This chapter will provide knowledge on modifying an existing
Xamarin Forms Client to “Azure-ize” it.

Time Estimate
65 Minutes

�Part 1: Open an Existing Xamarin Forms
Application
Time Estimate

5 Minutes

I have provided a fully functional app that works well with local data.

The problem is that to make the app useful, the data really should be in

the cloud, so the data is sharable among several users. Perhaps you have

Chapter 5 Building a Xamarin Forms Azure Client

http://bookpollapp.azurewebsites.net/
﻿https://github.com/Apress/azure-and-xamarin-forms﻿

207

developed a prototype that runs local data and need to do that same thing.

This is a very common problem in the developer community, for sure. The

app provides questions with a list of choices for responses. Think of it as

an app that facilitates polling or voting responses. In this part, you will be

modifying an existing solution. You will open the starter solution, build it,

run the project, and review the output.

	 1.	 Copy the Starter app from the book assets folder to

a folder close to the root, such as C:\Apressbooks.

From File Explorer, set properties to unblock and

then unzip. With Visual Studio, open the Starter

BookPollClientApp project.

	 2.	 As with any Xamarin Forms sample you download,

always restore NuGet packages first. Right-click the

solution and select Restore NuGet Packages. See

Figure 5-1.

Chapter 5 Building a Xamarin Forms Azure Client

208

Figure 5-1.  Right click on the solution and Select Restore NuGet
Packages

Chapter 5 Building a Xamarin Forms Azure Client

209

	 3.	 Set the UWP project to the startup project. The next

step is to build. Right-click the Portable project and

select Build. See Figure 5-2.

Figure 5-2.  Right-click the Portable and UWP projects and select
Build

	 4.	 If you see errors in the Portable project related to

EmbeddedResources, or other extraneous errors, do

the following:

•	 Right-click the project in the solution.

•	 Unload the project.

•	 Reload the project.

•	 Build the project.

This is another common problem on downloaded

Xamarin samples. Sometimes you may also have to

clean the solution (by right-clicking the solution),

then delete the obj and bin folders by clicking the

Show All Files button for each project. See

Figures 5-3 through 5-6.

Chapter 5 Building a Xamarin Forms Azure Client

210

Figure 5-3.  An EmbeddedResource error is not really an error

Figure 5-4.  To get rid of the preceding error, select Unload
Project

Chapter 5 Building a Xamarin Forms Azure Client

211

Figure 5-5.  By selecting Reload Project, the project should rebuild

Figure 5-6.  Show All Files button in Solution Explorer

To resolve extraneous errors, sometimes you must clean

project and delete the bin and obj folders. To see them,

click the Show All Files button in Solution Explorer.

Now we have a project that builds. Next, let’s run it and see the

application that currently runs from local data.

Chapter 5 Building a Xamarin Forms Azure Client

212

�Part 2: Add Azure Support to a Xamarin
Forms Application
Time Estimate

15 Minutes

Where do I start? The first thing will be to simply run the app and see it

execute in its current local data state. We will review the structure of the app,

so that you become a little more familiar with it. Then we will look at adding

the appropriate NuGet packages that are required to access Azure Services.

We will add the appropriate Azure initialization calls and create a PollQuestion

interface. In this part, you will add Azure support to an existing application.

	 1.	 Continue with the same project.

	 2.	 Set your preferred platform-specific project as the

startup project. Any of them will work.

	 3.	 Run the application to see it work. See Figure 5-7.

Figure 5-7.  Running the starter app should look like this

Chapter 5 Building a Xamarin Forms Azure Client

213

	 4.	 Expand the solution—it contains several projects, as

listed in Table 5-1.

Table 5-1.  Solution Project Layout

Project Description

BookPollClientApp This is the core Xamarin.Forms view shared assembly.

It contains the page definitions (one for the main page

and one for a results page), the models, and the code

that will interact with the service. Currently, it has

a mocked-out implementation that does everything

with hard-coded local data. You will be using the

IPollQuestionService interface, which you will implement

to connect to Azure Service.

BookPollClientApp.Android The Xamarin.Android platform-specific (head) project

BookPollClientApp.iOS The Xamarin.iOS platform-specific (head) project. You

will require a Mac host to run this application.

BookPollClientApp.UWP The Windows UWP platform-specific (head) project. You

will require Visual Studio for Windows to run this project.

It will be disabled on macOS.

	 5.	 We need the Azure client libraries in our projects

and to add NuGet references. This will allow us to

connect to Azure and interact with the exposed

table end points. Add the Microsoft.Azure.Mobile.

Client NuGet package to all of the projects. Right-

click the solution and select Manage NuGet

Packages for Solution… . Click the browse tab and

search on Microsoft.Azure.Mobile.Client. Check all

the projects, as shown in Figure 5-8.

Chapter 5 Building a Xamarin Forms Azure Client

214

	 6.	 If you see errors in the Error list after loading the

mobile client, click Save All and close and reopen

Visual Studio with the project.

	 7.	 Next, we must initialize the Azure library. Both

Android and iOS must initialize the Azure

client library, by adding a line of code into the

initialization of the app. This code must be done in

the platform-specific projects, as the method isn’t

available in the shared project. You only have to do

this for Android and iOS—and only if you plan to

run these platforms.

	 8.	 For Android, open the MainActivity.cs file in the

Xamarin.Android project. Because this is a Xamarin.

Forms app, the main Activity only launches once per

app-launch, and we can do our initialization here.

Figure 5-8.  Browse for Microsoft.Azure.Mobile.Client and install to
all the projects

Chapter 5 Building a Xamarin Forms Azure Client

215

	 9.	 Add a call to Microsoft.WindowsAzure.

MobileServices.CurrentPlatform.Init(); in the

OnCreate override. You can place it just before the

Forms.Init call. The following highlighted code is

what you must add:

 protected override void OnCreate(Bundle bundle)

 {

 TabLayoutResource = Resource.Layout.Tabbar;

 ToolbarResource = Resource.Layout.Toolbar;

 base.OnCreate(bundle);

 �Microsoft.WindowsAzure.MobileServices.

CurrentPlatform.Init();

 global::Xamarin.Forms.Forms.Init(this, bundle);

 LoadApplication(new App());

 }

	 10.	 For iOS, open the AppDelegate.cs file in the

Xamarin.iOS project.

	 11.	 Add a call to Microsoft.WindowsAzure.

MobileServices.CurrentPlatform.Init (); in the

FinishedLaunching override. You can place it just

before the Forms.Init call.

 �public override bool FinishedLaunching(UIApplication

app, NSDictionary options)

 {

 � �Microsoft.WindowsAzure.MobileServices.

CurrentPlatform.Init();

 � �global::Xamarin.Forms.Forms.Init();

Chapter 5 Building a Xamarin Forms Azure Client

216

 � �LoadApplication(new App());

 � �return base.FinishedLaunching(app,

options);

 � �}

	 12.	 Let’s create a new service class to interact with

Azure. The interface is defined to interact with our

poll data service. Currently, it’s implemented with a

mock class for local testing. Our goal is to eventually

replace this with a complete implementation that

talks to Azure (or some other online cloud provider).

Open the IPollQuestionService.cs file in the

Interfaces folder of the BookPollClientApp project.

This is the interface we must implement.

	 13.	 Let’s start by creating a new class that

implements the interface. Add a new class named

AzurePollService.cs in the Services folder.

	 14.	 Make the class public, and have it implement

IPollQuestionService. You can use the built-in

IDE support to add each required method stub. We

won’t actually be providing an implementation yet,

but all the methods must be present. Just leave the

throw new NotImplementedException(); in place

for now. Add these using statements:

using BookPollClientApp.Interfaces;

using Microsoft.WindowsAzure.MobileServices;

	 15.	 Make the class public, and as you type in the

interface to inherit, you should see the Intellisense

show the IPollQuestionService interface. See

Figure 5-9.

Chapter 5 Building a Xamarin Forms Azure Client

217

	 16.	 Hover over the red squiggle on IPollQuestionService

and select the Show potential fixes icon. Select

Implement interface. See Figure 5-10.

Figure 5-9.  Select the Intellisense for IPollQuestionService

Figure 5-10.  Select Implement interface

	 17.	 To interact with Azure Service, you use a

MobileServiceClient object. We’ll create one and

place it into our new AzurePollService class. Add a

new private field of type MobileServiceClient. Add

a new private method named Initialize, create

Chapter 5 Building a Xamarin Forms Azure Client

218

a mobile service client object, and assign it to your

field. You will require the URL of the Azure service

to pass into the constructor. We are working with

a pre-built service from Chapter 4. The URL to the

pre-built server from Chapter 4 is similar to

http://bookpollapp.azurewebsites.net.

Add this using statement to AzurePollService.cs

and the following code:

using Microsoft.WindowsAzure.MobileServices;

public class AzurePollService : IPollQuestionService

 {

 �const string AzureUrl = @"http://bookpollapp.

azurewebsites.net";

 MobileServiceClient client;

 void Initialize()

 {

 client = new MobileServiceClient(AzureUrl);

 }

 �public Task AddOrUpdatePollResponseAsync(PollRe

sponse response)

 {

 throw new NotImplementedException();

 }

...

	 18.	 Add a check into the Initialize method, to see

if the MobileServiceClient has been created (non-

null) and, if so, return. We want to be able to call this

method multiple times but have the logic executed

only once.

Chapter 5 Building a Xamarin Forms Azure Client

http://bookpollapp.azurewebsites.net/

219

	 19.	 Next, add a call to the Initialize method into each

of your implementation methods. We will create it

the first time we use the object (as opposed to when

it is created).

 �public class AzurePollService :

IPollQuestionService

 {

 �const string AzureUrl = "http://bookpollapp.

azurewebsites.net";

 MobileServiceClient client;

 void Initialize()

 {

 if (client != null)

 return;

 client = new MobileServiceClient(AzureUrl);

 }

 �public Task AddOrUpdatePollResponseAsync

(PollResponse response)

 {

 Initialize();

 throw new NotImplementedException();

 }

 �public Task DeletePollResponseAsync

(PollResponse response)

 {

 Initialize();

 throw new NotImplementedException();

 }

...

Chapter 5 Building a Xamarin Forms Azure Client

220

	 20.	 Now, let’s use our new Azure service and replace

the service mock! Open the MainPage.xaml.

cs file in the Portable project. It allocates an

IPollQuestionService as a field in the class.

Replace the MockPollQuestionService instance

with a new AzurePollService instance.

 public partial class MainPage : ContentPage

 {

 // TODO: replace implementation

 �readonly IPollQuestionService service = new

AzurePollService();

	 21.	 Run the application. It should now fail and display

a message indicating that the called method is

not implemented. However, we will have created

our Azure connection and are now set up to start

implementing data access methods! See Figure 5-11.

Figure 5-11.  Run, and an expected error will occur

Chapter 5 Building a Xamarin Forms Azure Client

221

Congrats! You have started the journey to add Azure services to

your app. Let’s proceed to the next step and get the app to be functional

again, by customizing the DTOs for the polling service.

�Part 3: Customize the DTOs for
the Polling Service
Time Estimate

10 Minutes

What we must do is wire the data we created in Chapter 4, now in the

cloud, to the app. The plumbing is done thru DTOs, as we saw in Chapter 4

when serving up the data. Here, we will be using the DTOs to consume the

data. Also, the data coming across the wire may have slightly different names

than we are using in our app. No problem. That’s what JSON attributes are

for. Just specify the name of the field you are getting from the service in the

attribute, and it will map it automatically for you. Phew! No major renaming

in my app! In this part, you will customize the DTOs by adding Json and

Table attributes.

There are two classes defined in the app that are used to hold the data

that drives the user interface (UI):

PollQuestion: This class holds a single question that

includes text and a set of answers delimited by a “|”.

PollResponse: This class is used to represent the

response to a poll question. It includes a property

for the responder’s name, the question ID being

answered, and the index of the answer chosen.

The server end points we will be interacting with have data similar to

the preceding data structures; however, when the developers created the

service, they deviated slightly from the specification (or maybe we deviated

from the specification when creating the client!).

Chapter 5 Building a Xamarin Forms Azure Client

222

The two classes will require Json.NET attributes, to set the name of the

table. Make sure the properties conform to the preceding data structures.

We have to modify the DTO to match the JSON response. If we tried

to use the current data structures as DTOs, they would not map much of

the API, and, in fact, would actually hit the wrong end point, for example,

PollQuestion instead of questions. We could fix this by renaming the

class and its properties, but that’s undesirable, because it would ripple

throughout the application. Instead, let’s fix this problem by applying

Json.NET attributes to our DTO, to change the serialization format.

	 1.	 Open the PollQuestion.cs source file in the Models

folder.

Note that the property names don’t match our

JSON-expected shape, and the name of the class is

being used as the end point name, which doesn’t

match.

	 2.	 Add a [Newtonsoft.Json.

JsonObject(Title="questions")] attribute to the

class, to fix the end point name. Add the following

using statement and code:

using Newtonsoft.Json;

namespace BookPollClientApp.Models

{

 [JsonObject(Title = "questions")]

 public class PollQuestion

 {

 public string Id { get; set; }

 public string Text { get; set; }

 public string Answers { get; set; }

Chapter 5 Building a Xamarin Forms Azure Client

223

 public override string ToString()

 {

 return Text;

 }

 }

}

	 3.	 Do the same fix for the PollResponse object. Recall

that the JSON shape

•	 Is exposed on an end point named "responses".

•	 Has the fields "questionId", "name", and "answer".

	 4.	 We will want to use the createdAt property a bit

later, so add a new property to provide access to the

field.

using Newtonsoft.Json;

using Microsoft.WindowsAzure.MobileServices;

using System;

namespace BookPollClientApp.Models

{

 [JsonObject(Title = "responses")]

 public class PollResponse

 {

 public string Id { get; set; }

 [JsonProperty("questionId")]

 public string PollQuestionId { get; set; }

 public string Name { get; set; }

 [JsonProperty("answer")]

 public int ResponseIndex { get; set; }

Chapter 5 Building a Xamarin Forms Azure Client

224

 [UpdatedAt]

 public DateTimeOffset UpdatedAt { get; set; }

 }

}

Looks like our data structures are now intact. But how about the logic

methods to work with our data?

�Part 4: Fill In the Logic to Query and Update
Our Poll Records
Time Estimate

10 Minutes

Data is useless unless we can get at it and pull it into the app. We may

want to have methods to pull back all the questions. Perhaps we want to

pull back a specific question or perform an update or insert in a record

set. In this part, you will provide the logic for database queries. Basically,

we want to be able to perform create, read, update, and delete (CRUD)

operations, using lists and/or individual records.

Now let’s add support to query and update our created tables in the

Azure service we created.

•	 Implement the GetQuestionsAsync method, which

retrieves all the questions from the questions table.

•	 Implement the GetResponseForPollAsync method,

which retrieves a single response record.

•	 Implement the GetResponsesForPollAsync method,

which retrieves all response records.

Chapter 5 Building a Xamarin Forms Azure Client

225

•	 Implement the AddOrUpdatePollResponseAsync

method, to add or update the passed record, based on

whether it exists in the database.

•	 Finally, implement the DeletePollResponseAsync

method, to remove an existing poll response.

	 1.	 Let’s create a table accessor for the questions

table. We have to retrieve an IMobileServiceTable

implementation for the questions. Luckily, we

already have a DTO defined in the Models folder of

our data project, which we just updated to support

the proper schema.

	 2.	 Open AzurePollService.cs. In the Initialize

method of your service, make a call to the mobile

service client GetTable method using PollQuestion

as the DTO. This will return IMobileServiceT

able<PollQuestion>, which you should store

in a class field (the chapter names this field

"questionsTable").

 public class AzurePollService : IPollQuestionService

 {

 �const string AzureUrl = @"http://bookpollapp.

azurewebsites.net";

 MobileServiceClient client;

 �IMobileServiceTable<PollResponse>

responseTable;

 �IMobileServiceTable<PollQuestion>

questionsTable;

 void Initialize()

 {

Chapter 5 Building a Xamarin Forms Azure Client

226

 if (client != null)

 return;

 client = new MobileServiceClient(AzureUrl);

 �questionsTable = client.

GetTable<PollQuestion>();

 �responseTable = client.

GetTable<PollResponse>();

 }

	 3.	 Next, to read all the questions, use the table

interface and implement the GetQuestionsAsync

method for your service. This just returns

Task<IEnumerable<PollQuestion>>, which

matches nicely with one of the retrieval methods

discussed in the class.

 �public Task<IEnumerable<PollQuestion>>

GetQuestionsAsync()

 {

 Initialize();

 return questionsTable.ReadAsync();

 }

	 4.	 Run the application and verify that questions show

up from Azure. (Do not try to type a name in yet or

you will get an error - we will fix this) One method

down! See Figure 5-12.

Chapter 5 Building a Xamarin Forms Azure Client

227

	 5.	 Next, let’s work with the responses table. The

steps here are pretty much identical to those we

performed with questions. Use the table interface

to retrieve the top 100 responses, to implement

the GetResponsesForPollAsync method for your

service. Order the data by the CreatedAt property

in descending order. The method we are modifying

here for GetResponsesForPollAsync only has one

parameter, questionId (not to be confused with the

method called GetResponseForPollAsync, which

has two parameters).

•	 Order the data by the CreatedAt property in

descending order.

•	 Restrict the query to 100 records with the Take

method.

Figure 5-12.  The questions have been populated and connected to
Azure

Chapter 5 Building a Xamarin Forms Azure Client

228

•	 You will need to add a ToEnumerableAsync method

to the call.

 �public async Task<IEnumerable<PollResponse>>

GetResponsesForPollAsync(string questionId)

 {

 Initialize();

 return await responseTable

 .OrderByDescending(r => r.UpdatedAt)

 .Take(100).ToEnumerableAsync();

 }

	 6.	 Next, implement the GetResponseForPollAsync

method, by adding a Where clause to the table.

Implement the following code to return the

first PollResponse result from the Enumerable

collection that matches the questionId and the

name parameters. Also, you will have to add a using

statement for System.Linq.

using System.Linq;

 �public async Task<PollResponse>

GetResponseForPollAsync(string questionId,

string name)

 {

 Initialize();

 �return (await responseTable.Where(r =>

r.PollQuestionId == questionId &&

r.Name == name)

 .ToEnumerableAsync()).FirstOrDefault();

}

Chapter 5 Building a Xamarin Forms Azure Client

229

	 7.	 Implement the DeletePollResponseAsync method,

using the table DeleteAsync method. This is a

straight call. You will have to use async and await in

this method.

 �public async Task DeletePollResponseAsync(PollR

esponse response)

 {

 Initialize();

 await responseTable.DeleteAsync(response);

 }

	 8.	 Finally, implement the

AddOrUpdatePollResponseAsync method. You will

either have to call InsertAsync or UpdateAsync,

based on whether the request is in the database. You

can tell if the value already exists in the database by

looking at the Id property. If it’s null or empty, it’s a

new response.

 �public Task AddOrUpdatePollResponseAsync(PollRe

sponse response)

 {

 Initialize();

 if (string.IsNullOrEmpty(response.Id))

 {

 �return responseTable.

InsertAsync(response);

 }

 return responseTable.UpdateAsync(response);

 }

Chapter 5 Building a Xamarin Forms Azure Client

230

	 9.	 Run the app again. We now have a complete

implementation, and it should work exactly the

way it did with your local mocked service, except

now, the data is persisted. If you run this on

different devices, you’ll see the same data shared

across them, because it’s stored in the cloud! Click

the menu to see your responses or delete them. See

Figures 5-13 and 5-14. We have made quite a few

changes to the current project and the completed

project through Part 4 of Chapter 5 is located in this

book’s assets folder, in case you have to double-check

your work.

Note  The source code and assets for this book can be downloaded
from https://github.com/Apress/azure-and-xamarin-forms

Figure 5-13.  Select the menu choice for Show Results, after clicking
on an answer and entering your name

Chapter 5 Building a Xamarin Forms Azure Client

https://github.com/Apress/azure-and-xamarin-forms

231

Wow! We now have a functioning app that is using cloud-based data.

Congrats! You may want to save this project, so that you can come back to

it, if needed, when working on this chapter’s next part, on adding offline

caching to the app. You are at a good checkpoint.

�Part 5: Add Support to Our App for Offline
Data Caching
Time Estimate

15 Minutes

Many apps today require an offline strategy. For example, say you have

an app that works in the field for an electric company, and you need to

have it work all the time, even in rural areas where Internet and cellular

connectivity is poor. Well, this is a perfect reason to store the updates and

retrieve copies of the data locally. Once connectivity is restored, you can

update the cloud data. I always thought this was a tough nut to crack,

before I learned Azure, but you will be amazed at how simple this is, using

SQLite for local storage and Azure services for synchronization. In this

part, you will add support for offline caching, using SQLite.

•	 Add the Microsoft.Azure.Mobile.Client.SQLiteStore

NuGet package to all the projects.

•	 Add the required SQLite PCL initialization code into

the iOS head/platform project.

Figure 5-14.  See the list of poll answers and enter more

Chapter 5 Building a Xamarin Forms Azure Client

232

•	 Create a new MobileServiceSQLiteStore to hold our

local data.

•	 Define our two tables in the SQLite store.

•	 Initialize MobileServiceClient.SyncContext with the

SQLite store.

•	 Change the table definitions to use

IMobileServiceSyncTable.

•	 To add support offline caching, we must add a

reference to another NuGet package and call an

initialize method for our iOS application, as follows:

	 1.	 Add a NuGet reference to the Microsoft.Azure.

Mobile.Client.SQLiteStore package to each of

the platform-specific (head) projects and to your

PCL. See Figure 5-15.

Figure 5-15.  Add the NuGet package for Microsoft.Azure.Mobile.
Client.SQLiteStore to all projects.

Chapter 5 Building a Xamarin Forms Azure Client

233

	 2.	 Next, in the iOS platform-specific project, open

AppDelegate.cs and add a call to SQLitePCL.

CurrentPlatform.Init ();, to initialize the SQLite-

managed library. This should happen as part of your

application initialization, just as when initializing

the Azure client library. This is only required for

iOS. You may have to add another NuGet package

SQLitePCL by Microsoft Open Technologies. See

Figure 5-16.

Figure 5-16.  Add NuGet package for SQLitePCL to the iOS project

 �public override bool FinishedLaunching(UIApplication

app, NSDictionary options)

 {

 �Microsoft.WindowsAzure.MobileServices.

CurrentPlatform.Init();

 SQLitePCL.CurrentPlatform.Init();

 global::Xamarin.Forms.Forms.Init();

 LoadApplication(new App());

 return base.FinishedLaunching(app, options);

 }

Chapter 5 Building a Xamarin Forms Azure Client

234

	 3.	 Next, we have to initialize our local database, so

the Azure client can work with a local data source,

instead of the remote database.

	 4.	 Open your AzurePollService.cs service you have

been working on.

	 5.	 In the Initialize method, create a new

MobileServiceSQLiteStore and store it in a local field

in the method.

	 6.	 Next, call a DefineTable<T> method on the database

store for our two DTOs.

using Microsoft.WindowsAzure.MobileServices.

SQLiteStore;

. . .

 void Initialize()

 {

 if (client != null)

 return;

 �var store = new

MobileServiceSQLiteStore("Poll.db");

 store.DefineTable<PollQuestion>();

 store.DefineTable<PollResponse>();

 client = new MobileServiceClient(AzureUrl);

 �questionsTable = client.

GetTable<PollQuestion>();

 �responseTable = client.

GetTable<PollResponse>();

 }

Chapter 5 Building a Xamarin Forms Azure Client

235

	 7.	 The location for poll.db will be in the appropriate

app storage area for the platform. For example, in

Windows, you will see it at the following location,

after we run the app: C:\Users\{user}\AppData\

Local\Packages\{long guid}\LocalState.

	 8.	 Uninstalling the app in any platform will also

uninstall the local database, as it is part of the app

deployment.

	 9.	 When using SQLite, we must use all data-

related methods as Async methods, or your app

might crash. Next, call the InitializeAsync

method on the SyncContext property of your

MobileServiceClient.

•	 Pass the created store as the first parameter.

•	 Pass a new instance of a

MobileServiceSyncHandler object as the second

parameter. This class is what executes the async

calls to synchronize the database. We are using the

default implementation.

	 10.	 Note that this method is asynchronous and returns

a Task. To make this easier to work with, you can

modify the method to be async and return a Task, so

errors propagate out.

Chapter 5 Building a Xamarin Forms Azure Client

236

	 11.	 Rename the method to InitializeAsync, so it is

clear that this method is asynchronous. You can use

the Rename refactoring, to ensure this change goes

through the class. Use this using statement and the

code below.

using Microsoft.WindowsAzure.MobileServices.Sync;

 async Task InitializeAsync()

 {

 if (client != null)

 return;

 �var store = new

MobileServiceSQLiteStore("Poll.db");

 store.DefineTable<PollQuestion>();

 store.DefineTable<PollResponse>();

 client = new MobileServiceClient(AzureUrl);

 �await client.SyncContext.

InitializeAsync(store, new

MobileServiceSyncHandler());

. . .

}

Chapter 5 Building a Xamarin Forms Azure Client

237

	 12.	 That last change ripples throughout our class,

because we call InitializeAsync from every

method. Fix all the methods, using the await keyword

on each call to InitializeAsync. You can use the

following code as a guide, to apply the keywords into

the correct place, if you need some help:

 �public async Task AddOrUpdatePollResponseAsync(

PollResponse response)

 {

 await InitializeAsync();

 if (string.IsNullOrEmpty(response.Id))

 {

 �await responseTable.

InsertAsync(response);

 }

 await responseTable.UpdateAsync(response);

 }

 �public async Task<IEnumerable<PollQuestion>>

GetQuestionsAsync()

 {

 await InitializeAsync();

 return await questionsTable.ReadAsync();

 }

 �public async Task<PollResponse>

GetResponseForPollAsync(string questionId,

string name)

 {

 await InitializeAsync();

 �return (await responseTable.Where(r =>

r.PollQuestionId == questionId && r.Name

== name)

Chapter 5 Building a Xamarin Forms Azure Client

238

 .ToEnumerableAsync()).FirstOrDefault();

 }

 �public async Task<IEnumerable<PollResponse>>

GetResponsesForPollAsync(string questionId)

 {

 await InitializeAsync();

 return await responseTable

 .OrderByDescending(r => r.UpdatedAt)

 .Take(100).ToEnumerableAsync();

 }

 �public async Task DeletePollResponseAsync(PollR

esponse response)

 {

 await InitializeAsync();

 await responseTable.DeleteAsync(response);

 }

	 13.	 The final step in switching to our local cache is to

use the IMobileServiceSyncTable interface instead

of our normal IMobileServiceTable.

	 14.	 Change the two fields holding the questions and

responses to be IMobileServiceSyncTable.

	 15.	 Change the call to GetTable on the

MobileServiceClient> to GetSyncTable.

 �const string AzureUrl = "http://

bookpollapp.azurewebsites.net";

 MobileServiceClient client;

 �IMobileServiceSyncTable<PollQuestion>

questionsTable;

 �IMobileServiceSyncTable<PollResponse>

responseTable;

Chapter 5 Building a Xamarin Forms Azure Client

239

 async Task InitializeAsync()

 {

 if (client != null)

 return;

 �var store = new

MobileServiceSQLiteStore("Poll.db");

 store.DefineTable<PollQuestion>();

 store.DefineTable<PollResponse>();

 client = new MobileServiceClient(AzureUrl);

 �await client.SyncContext.

InitializeAsync(store, new

MobileServiceSyncHandler());

 �questionsTable = client.

GetSyncTable<PollQuestion>();

 �responseTable = client.

GetSyncTable<PollResponse>();

 }

	 16.	 Run the application to see the results. If you get an

error such as “The specified path, file name or both,”

close the project, shorten the folder names, reopen,

rebuild, and run the application again. You can also

simply copy the entire project closer to the root of

your drive, as another alternative.

	 17.	 We are now using our local cached data—except we

have no data! So, the screen will come up without

data. The next step is to learn how to synchronize

our data to the remote database.

Chapter 5 Building a Xamarin Forms Azure Client

240

I can see light at the end of the tunnel. Can you? We are building things

to a crescendo, to the most exciting part in this chapter: synchronization. It

will take your app to a professional level.

�Part 6: Synchronizing to the Remote
Database
Time Estimate

10 Minutes

Not only will you add and learn the code that does the magic on

synchronization, you will also learn to use some tools to see what is going

across the wire. When I presented this at a recent Azure Developer Event,

the crowd went wild! Really. In this part, you will test offline use and

synchronization.

•	 Use Edge, Firefox, or Chrome to query the data.

(Internet Explorer will not display but makes available

the results via a downloaded file.)

•	 You can also use Postman to query the data.

•	 Push any changes to the remote database when the app

is launched.

•	 Pull down the latest questions table when the app is

launched.

•	 Synchronize changes to the responses table each time

we change the question or the name.

Chapter 5 Building a Xamarin Forms Azure Client

241

	 1.	 Because you’ll now be working offline, it’s helpful

to be able to look at what’s currently on the server.

You can do this by hitting the responses table

directly with a REST client, such as Postman or

Edge, Chrome or Firefox. The end point you want to

GET is https://bookpollapp.azurewebsites.net/

tables/responses, and use the header for ZUMO-

API-VERSION with the value 2.0.0.

	 2.	 Let’s use Firefox, as it formats the data that is

displayed. As the URL, type https://bookpollapp.

azurewebsites.net/tables/responses?ZUMO-API-

VERSION=2.0.0. See Figure 5-17.

Figure 5-17.  Firefox display of table responses

Chapter 5 Building a Xamarin Forms Azure Client

https://www.getpostman.com/
https://bookpollapp.azurewebsites.net/tables/responses
https://bookpollapp.azurewebsites.net/tables/responses
https://bookpollapp.azurewebsites.net/tables/responses?ZUMO-API-VERSION=2.0.0
https://bookpollapp.azurewebsites.net/tables/responses?ZUMO-API-VERSION=2.0.0
https://bookpollapp.azurewebsites.net/tables/responses?ZUMO-API-VERSION=2.0.0

242

	 3.	 Let’s start by synchronizing the questions table.

We’ll do this as part of our initialization logic in our

service code. Locate the InitializeAsync method

and use the MobileServiceClient.SyncContext

to push changes to the remote database after we

initialize our sync tables. After you’ve pushed

changes that may have been made while offline, go

ahead and pull all questions down. Because these

don’t change frequently, we’ll just pull them down

once, as part of our initialization code. Because this

is part of our initialization code, go ahead and pass

in a query name (such as "allQuestions"), so we

turn on incremental sync. You can use a standard

full query. Make sure to catch exceptions. For now,

just dump the exception to the debug console, using

Debug.WriteLine. Run the app and verify that you

get questions in the UI now. Use the following using

statement and code:

using System.Diagnostics;

 async Task InitializeAsync()

 {

 if (client != null)

 return;

 �var store = new

MobileServiceSQLiteStore("Poll.db");

 store.DefineTable<PollQuestion>();

 store.DefineTable<PollResponse>();

 client = new MobileServiceClient(AzureUrl);

Chapter 5 Building a Xamarin Forms Azure Client

243

 �await client.SyncContext.

InitializeAsync(store, new

MobileServiceSyncHandler());

 �questionsTable = client.

GetSyncTable<PollQuestion>();

 �responseTable = client.GetSyncTable<PollRe

sponse>();

 try

 {

 await client.SyncContext.PushAsync();

 await questionsTable.PullAsync(

 �"allQuestions", questionsTable.

CreateQuery());

 }

 catch (Exception ex)

 {

 �Debug.WriteLine("Got exception: {0}",

ex.Message);

 }

 }

	 4.	 Next, we must write a method to synchronize our

response table. Because this table will be changed

by our app (and on the server), we will have to

synchronize it more often than the questions.

Because the app always works with responses only

for the current question, we’ll use a custom query

that only synchronizes for a specific question.

Add a new method, SynchronizeResponsesAsync,

that returns a Task and takes a string that is the

questionId we want to retrieve responses for.

Use the PullAsync method to retrieve only the

Chapter 5 Building a Xamarin Forms Azure Client

244

responses for the passed questionId. We can turn

on incremental sync by supplying a query name.

However, it must be unique for each query, meaning

it has to take into account the questionId. The

easiest way to do that is to generate a unique string

by appending the questionId itself. As with the

previous code, make sure to catch exceptions. Just

output them to the debug console.

 �async Task SynchronizeResponsesAsync(string

questionId)

 {

 try

 {

 �await responseTable.

PullAsync("syncResponses" + questionId,

 responseTable.Where(

 �r => r.PollQuestionId

== questionId));

 }

 catch (Exception ex)

 {

 // TODO: handle error

 �Debug.WriteLine("Got exception: {0}",

ex.Message);

 }

 }

Chapter 5 Building a Xamarin Forms Azure Client

245

	 5.	 We will want to perform the response

synchronization each time we change a record, so

add a call to our new SynchronizeResponsesAsync

method into your AddOrUpdatePollResponseAsync

and DeletePollResponseAsync methods after you

make the change.

 �public async Task AddOrUpdatePollResponseAsync(

PollResponse response)

 {

 await InitializeAsync();

 if (string.IsNullOrEmpty(response.Id))

 {

 �await responseTable.

InsertAsync(response);

 }

 await responseTable.UpdateAsync(response);

 �await SynchronizeResponsesAsync(response.

PollQuestionId);

 }

 �public async Task DeletePollResponseAsync(PollR

esponse response)

 {

 await InitializeAsync();

 await responseTable.DeleteAsync(response);

 �await SynchronizeResponsesAsync(response.

PollQuestionId);

 }

Chapter 5 Building a Xamarin Forms Azure Client

246

	 6.	 We also want to synchronize to the response

table when we change the current question

or the name. In both cases, this will call our

GetResponseForPollAsync method. However, we

don’t want to refresh against the table every single

time because this is called quite often. Instead, let’s

only refresh if the passed questionId parameter

changes.

•	 Create a private field in the class to hold the last

known questionId we refreshed our responses for.

•	 Check the field against the passed questionId

parameter. If it’s different, then synchronize against

the responses table using our method and set the

last questionId field. Run the application, try

adding and deleting a few records, and compare it

to the online version through the REST client.

 string lastQuestionId;

 �public async Task<PollResponse>

GetResponseForPollAsync(string questionId,

string name)

 {

 await InitializeAsync();

 if (lastQuestionId != questionId)

 {

 �// Get the latest responses for this

 �// question.

 �await SynchronizeResponsesAsync

(questionId);

 lastQuestionId = questionId;

 }

Chapter 5 Building a Xamarin Forms Azure Client

247

 �return (await responseTable.Where(r =>

r.PollQuestionId == questionId && r.Name ==

name)

 .ToEnumerableAsync()).FirstOrDefault();

 }

	 7.	 Run the app once, to cache the questions and

responses.

	 8.	 Next, let’s force the app offline and see how it

responds. Prior to our changes, it would have simply

failed. We have several ways we can test no network.

If you are on a physical device, you can switch to

Airplane mode. On a simulator, we can simply

change the AzureUrl value to something we cannot

resolve.

	 9.	 Change the AzureUrl constant string to be invalid.

For example, change the ".net" suffix to ".zzz"

(kind of like it’s sawing wood!).

	 10.	 Run the application and make some changes offline.

See Figure 5-18.

Chapter 5 Building a Xamarin Forms Azure Client

248

	 11.	 Shut down the app, reset the URL back, and run it

again. When it launches, verify that your changes

are still in the app, by looking at all responses. They

should immediately synchronize back to the server.

See Figure 5-19.

Figure 5-18.  Enter an offline user and select a book

Figure 5-19.  Your offline entry should immediately synchronize back
to the server. Cool, huh? It’s just that easy to sync.

Chapter 5 Building a Xamarin Forms Azure Client

249

�Summary
In this chapter, you added support to an existing Xamarin.Forms

application to access an Azure mobile service. You finished the Xamarin

client application and implemented a complete client to access the Azure

Poll service and the main logic for the Xamarin client application. You

added full support for locally caching data, using the built-in support.

Finally, you completed your offline caching, by synchronizing your local

database with the remote database on Azure.

Chapter 5 Building a Xamarin Forms Azure Client

251© Russell Fustino 2018
R. Fustino, Azure and Xamarin Forms, https://doi.org/10.1007/978-1-4842-3561-4_6

CHAPTER 6

Delete Resources
in Your Subscription
In this short chapter, you will delete the resource groups in your

subscription, for the resources you created in this book. This will delete all

the artifacts created in Azure for this book.

�Removing All Artifacts
When I was learning Azure, I was not deleting resources, even though I

was really done with them. I also am a pack rat. These are bad things. The

good thing to do, after you have read this book, is to delete the resources

you created, or you will be racking up unnecessary charges. Soon, your free

credit and/or your monthly credit will be used up! Using resource groups,

as we have done in this book, makes this task very easy and quick.

Time Estimate
5 Minutes

	 1.	 In the Azure Management portal, click Resource

groups. See Figure 6-1.

252

	 2.	 Click the resource group created in Chapter 4. It

should be similar to BookPollAppRG resource

group. Then select the Delete resource group action.

See Figure 6-2.

Figure 6-1.  Select Resource groups from your portal dashboard

Figure 6-2.  Click Delete resource group

Chapter 6 Delete Resources in Your Subscription

253

	 3.	 If you have not already deleted the resources from

Chapter 3, do so now as well. Delete the resources

created in Chapter 3 by clicking on Resource groups

and then pressing the Delete button for each of

them. They should be called something similar to

demorg, MYWebsiteRG, rgfromps, and SQL2018RG.

	 4.	 Click the Delete resource group button to delete the

resource group. When prompted, type in the name

of the resource group, to confirm. See Figure 6-3.

�Summary
In this chapter, you have removed the related resources that were created

in previous chapters.

�Book Summary
In this book, you learned several important applications and concepts with

which to create a working Xamarin Forms app and use Azure, including

the following:

Xamarin Forms:

•	 Navigation

•	 Layout controls, such as StackLayout and GridLayout

•	 Device-dependent logic to adapt to phones and tablets

•	 File input and output

Figure 6-3.  Click Delete resource group for each resource group
created in this book

Chapter 6 Delete Resources in Your Subscription

254

•	 Embedded resources by using images

•	 ListView template page and template customization

•	 A working Xamarin Forms app and an understanding

of the solution structure

Azure:

•	 Azure portal, resource usage, and billing data

•	 High-level architecture from end to end, by creating a

Virtual Machine, SQL database, ASP.NET web site, and

a mobile app

•	 Deployment from GitHub

Azure and Xamarin Forms:

•	 Using the Azure Mobile Apps Quickstart template to

create a database and create a service app with a Table

API and a new sample Xamarin Forms app

•	 Consuming that service in the client application, by

taking an existing app and modifying it to use Azure

client services

•	 Creating offline storage with SQLite and

synchronization with an online SQL database

•	 Using tools to verify database table data.

Note T he source code and assets for this book can be downloaded
from https://github.com/Apress/azure-and-xamarin-
forms

Chapter 6 Delete Resources in Your Subscription

﻿https://github.com/Apress/azure-and-xamarin-forms﻿
﻿https://github.com/Apress/azure-and-xamarin-forms﻿

255© Russell Fustino 2018
R. Fustino, Azure and Xamarin Forms, https://doi.org/10.1007/978-1-4842-3561-4

Index
A, B
Azure

activation, 92
billing and usage, 103–104
continue to portal, 94
CLI (see Command-line

interface (CLI))
delete resources, 153–154
deployment models and

resource groups, 118
documentation, 145
free account signup, 92–93
Marketplace, 104–106
Microsoft Partner, 96
solutions, 146–148
status, 148–149
support, 149–152
Visual Studio Community, 92
Visual Studio Dev Essentials

benefits, 91
Visual Studio Enterprise, 95–96
welcome page, 93–94

Azure portal
azure.microsoft.com, 96
dashboard, 97
feedback, 102
G+/ to search resources, 101

help menu, 101
navigation pane, 98
portal.azure.com, 96
SQL, 99
theme and language, 99–100

C
Command-line interface (CLI)

Azure App Service, 133
azure.microsoft.com page, 129
chart and metrics, 137
clone URL, 134
deployment details, 136
MVC web site, 135
portal, 135
PowerShell

commands, 128–131
resources menu and

code samples, 132
Web app and service plan, 131

Create, read, update, and delete
(CRUD) operations, 224

D, E, F, G, H
Data transfer objects (DTOs), 167,

169, 205, 221–224

https://doi.org/10.1007/978-1-4842-3561-4

256

Delete resources
Azure, 254
BookPollAppRG resource

group, 252
portal dashboard, 252
resource group, 253
Xamarin Forms, 253–254

I, J, K, L, M
Independent software

vendors (ISVs), 105

N, O, P
NuGet packages, 212

Q, R
Quickstart Azure Mobile App

Add Controllers
ASP.NET attributes, 176–178
Azure Mobile Apps Table

Controller, 170
BookPollApp

Context.cs, 171, 178–179
BookPollAppService, 171
COM component error, 172
Controllers folder, 170
PollQuestionController, 180
PollResponseController, 180
Questions

Controller.cs, 171, 173

Responses
Controller.cs, 172, 175

scaffolding error, 173
statements, 174–175
Visual Studio Add

Controller, 178
adding, data connection, 161
BookPollAppRG, 158
client application, 155
database connection, 160
data and force entity framework

BookPollAppRG, 188–189
Constants.cs, 192
database and app service, 182
database tables, 193
Microsoft Azure

App Service, 188
Restore NuGet Packages, 192
Startup.Mobile

App.cs, 183, 185, 186
“to-do list” items, 194–195
UWP project and StartUp

Project, 193
web service, 190
Xamarin Forms, 191

database verification
BookPollAppDB, 198
client IP, 202
dbo.questions table, 200
dbo.TodoItems, 199
PollQuestionController, 203
portal, 196
QuestionsController, 203

Index

257

SQL Server Management
Studio, 195–196

drop-down menu, 162–163
modification, 164–167
MS_TableConnectionString, 162
questions, DTOs and end

points, 167–169
Table API service app, 155
Xamarin.Forms, 155, 159

S, T
SQL2018RG, 139
SQL Database

creation, 138–142
Visual Studio, 142–145

U
Uniform Resource

Identifiers (URIs), 59
Universal Windows

Platform (UWP), 1–2
User interface (UI)

GridLayout for buttons, 49
MainPage.xaml.cs, 42
new buttons, 43
resized buttons, 45
StackLayout and GridLayout

classes, 40–41
StackLayout XAML, 44, 46–48
StackLayout

HorizontalOptions, 44
WidthRequest, 44

V
Virtual machines (VM)

Azure regions map, 113
basic info, 109
benefits, 107
credentials, 115–116
deployment, 112
enhanced security

configuration, 117
Linux VM, 107
Marketplace, 107
MSDN subscription, 108
notification, deployment

succeeded, 112
Pick A1 Basic, 110
RDP file, 114
Server Manager, 116
settings defaults, 110–111
SharePoint/WebSphere, 107
UWP dev on Windows Server

machine, 108
Visual Studio, 107–108
VS Community 2017 on

Windows Server 2016, 108
Xamarin, 117

Visual Studio 2017
ASP.NET and web

development, 3
components, 3
data storage and processing, 3
download and install, 1
Firefox, 5
Google Android Emulator, 4

Index

258

iOS and Android, 1
Mac tools, 4–5
Mobile development

with .NET, 2
SQL Server

Management Studio, 5
Xamarin, 2

W
Web App ASP.NET

Account settings and log, 122
Azure App Service, 123
Azure resource management

APIs, 124–125
build the project, 121
Connected Services, 128
MVC, 121
publish, 122
Service plan tiers, 126, 127
SQL database, 120
Visual Studio, 120

Windows 10 Pro, 1

X, Y, Z
Xamarin Forms

AddOrUpdatePollResponse
Async method, 229

AppDelegate.cs file, 215
AzurePollService.cs, 218, 225–226
Azure service, 224–225
creation

adding existing images, 62
add New Item, 33
App.xaml.cs, 37–38
Blank App template, 14–15
BookLists.Android, 17
configuration

manager option, 27
Cross Platform App, 13
Developer mode, 16
event button, 36
Hyper-V Manager, 22
Images folder, 61
iOS simulator, 31
iPhone 8 iOS, 31
iPhoneSimulator, 31–32
5” KitKat, 19
List View Page

template, 33–34
Local Machine, 25
Mac Server, 16
MainPage.xaml.cs, 36–38
Microsoft Books ListView

page, 34, 39–40
Microsoft.xaml, 34
.NET Standard project, 33
remote login, 29
remote simulator, 28
run command, 20–21
security alert, 14
Set as StartUp Project, 17–18
Solution Explorer window, 17
StackLayout, 35
Startup project, 25

Visual Studio (cont.)

Index

259

System Preferences and
Network, 30

UWP versions, 15, 26
VS Android emulator, 19–21
Welcome to Xamarin

Forms, 23–24
Xamarin Mac Agent, 28
xaml.cs file, 35

DeletePollResponseAsync
method, 229

detail page, Apress site, 9, 10
DTOs, 221–224
GetQuestionsAsync

method, 226
GetResponsesForPollAsync

method, 227
images

Build Action, 60
embedded

resources, 59, 62–63
ImageResource

Extension.cs, 63–64
IMarkupExtension, 64, 65
Microsoft image, 68
.NET Standard project, 61
TabletView, 65–67

implement interface, 217
IPollQuestion

Service.cs file, 216, 217
ListView

Android tablet, 84
BookViewModel.cs, 70–71

CachingStrategy,
RecycleElement, 87–88

Handle_ItemSelected
event handler, 79–80

INotifyPropertyChanged
interface, 71–78

Microsoft.xaml.cs, 78, 80–83
NuGet package, 87
URL display, 86
UWP ListView, 85, 86
ViewModels, 69–70

list view page, 8–9
Mac server, 10
MainActivity.cs file, 214
main navigation page, 7–8
MainPage.xaml.cs file, 220
Microsoft.Azure.

Mobile.Client, 213–214
MobileServiceClient, 218
NuGet packages, 212
offline data caching

AzurePollService.cs
service, 234

GetTable, 238
IMobileServiceSyncTable

interface, 238
InitializeAsync, 237
iOS project, 233
Microsoft.WindowsAzure.

MobileServices.Sync, 236
MobileServiceClient, 235

Index

260

MobileService
SQLiteStore, 234

NuGet package, 232
SQLite, 231

open on existing application,
206–207, 209–211

PollQuestion interface, 212
projects, 213
remote database

AzureUrl value, 247
Debug.WriteLine, 242–243
DeletePollResponseAsync

methods, 245
GetResponseForPollAsync

method, 246
SynchronizeResponses

Async method, 243, 245
table responses, 241
test offline use and

synchronization, 240

run the application, 212
StackLayout and

GridLayout, 10
System.Linq statement, 228
Tablet and Phone

Form Factors
Android phone view,

stack layout, 56
Device.Idiom, 54–55
grid view, 50, 59
grid layout, 57
5” KitKat, 55
MainPage.xaml, 54
10.1” Marshmallow

Tablet, 57, 58
PhoneView, 53
ScrollView, 49
StackLayout and Grid, 52
Surround With, 51
Visual Studio Emulator

for Android app, 58

Xamarin Forms (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Installing Visual Studio 2017
	Installing Visual Studio 2017 and Tools on Windows
	Installing Visual Studio 2017 and Tools on the Mac
	Other Tools
	Summary

	Chapter 2: Introduction to Xamarin Forms
	Project Overview
	Project 2-1: Creating Your First Xamarin Forms Application
	Project 2-2: Working with the User Interface
	Project 2-3: Dealing with Tablet and Phone Form Factors
	Project 2-4: Working with Images
	Project 2-5: Working with ListView
	Summary

	Chapter 3: Introduction to Azure: A Developer’s Perspective
	Free Azure Accounts and Credits
	Azure Portal
	Billing and Usage
	Marketplace
	Windows Virtual Machines
	Deployment Models and Resource Groups
	Web App ASP.NET
	Azure CLI
	SQL Database
	Creating Your Database
	Using Visual Studio to Verify Your Database

	Building Solutions
	Documentation
	Solutions
	Status
	Support

	Delete Resources
	Summary

	Chapter 4: Building an Azure Service Using Quickstart
	Part 1: Create a Mobile App in the Azure Portal
	Part 2: Modify the Service App
	Part 3: Add the Question and Response DTOs and End Points
	Part 4: Add Controllers
	Part 5: Seed the Data and Force Entity Framework to Re-create Our Tables and Publish
	Part 6: Verify the Database
	Summary

	Chapter 5: Building a Xamarin Forms Azure Client
	Part 1: Open an Existing Xamarin Forms Application
	Part 2: Add Azure Support to a Xamarin Forms Application
	Part 3: Customize the DTOs for the Polling Service
	Part 4: Fill In the Logic to Query and Update Our Poll Records
	Part 5: Add Support to Our App for Offline Data Caching
	Part 6: Synchronizing to the Remote Database
	Summary

	Chapter 6: Delete Resources in Your Subscription
	Removing All Artifacts
	Summary
	Book Summary

	Index

